Penta pre-continuity and Penta semi-continuity in penta Topological Space

Ranu Sharma^{1,a} and Sachin Sharma^{2,b}

^{1,a} Department of Applied Mathematics and Computational Science, SGSITS, Indore (M.P.) ^{1,b} Department of Mathematics, S.J.H.S.G. Innovative College, Indore (M.P.)

Abstract.

The aim of this paper is to study properties of penta pre-open set and penta semi-open sets in penta topological spaces and also introduce penta pre-continuity and penta semi-continuity in penta topological space.

Keywords: penta semi-open sets, penta semi-continuity, penta pre-open sets, penta precontinuity.

AMS Mathematics Subject Classification (2010): 54A40

1. Introduction

J .C. Kelly [2] introduced the concept of bitopolgical space. N. Levine [5] introduced the idea of semi-open sets and semi-continuity and Mashhour et. al [7] introduced the concept of pre-open sets and pre-continuity in a topological space. M. Jelic [1] generalized the idea of pre- open sets and pre-continuity in bitopological space. S.N. Maheshwari and Prasad [6] introduced semi-open sets in bitopological spaces. The tri topological space was introduced by Martin M. Kovar [4].S. Palaniammal [10] studied properties of tri-open sets in tri-topological space. D.V. Mukundan [8] introduced quad topological space.

Penta topological space was introduced by Muhammad Shahkar Khan and Gulzar Ali Khan [3]. G. Priscilla Pacifica & S. Shehnaz Fathima [9] studied basic concepts in penta topological space. In this paper we use penta-open set(p-open set) in place of τ_i : $i \in \{1,2,3,4,5\}$ open set.

In this paper, we studied penta semi-open sets, penta pre-open sets, penta semi-continuity and penta pre-continuity and their fundamental properties in penta topological space.

2. Preliminaries

Definition 2.1[3] Let (X, τ_p) be a p-topological space. Elements of τ_i ; $i \in 1, 2, 3, 4, 5$ are called τ_i -open sets and their relative complements are called τ_i -closed sets.

Definition 2.2[3]: Let (X, τ_p) be a p-topological space. A subset A of X is called penta-open (p-open) if $A \in \bigcup \tau_i$; $i \in \{1, 2, 3, 4, 5\}$ and its complement is said to be penta-closed (p-closed).

Definition 2.3[9]: Let $(X, \tau_1, \tau_2, \tau_3, \tau_4, \tau_5)$ be a penta topological space. $A \subset X$ is called semi (1, 2, 3, 4, 5) open if $A \subset \tau_{1,2,3,4,5} \operatorname{cl} \tau_{1,2,3,4,5} \operatorname{int}(A)$.

Definition 2.4[9]: Let X, τ_1 , τ_2 , τ_3 , τ_4 , τ_5 be a penta topological space. $A \subset X$ is called pre (1, 2,3,4, 5) open if $A \subset \tau_{1,2,3,4,5}$ int $\tau_{1,2,3,4,5} cl(A)$.

3. Penta Pre-open sets in penta topological space

Definition 3.1: Let $(X, T_1, T_2, T_3, T_4, T_5)$ be a penta topological space. The intersection of all penta pre-closed sets of X containing a subset A of X is called penta pre-closure of A and is denoted by p - Pint(A).

Definition 3.2: Let $(X, T_1, T_2, T_3, T_4, T_5)$ be a penta topological space. The intersection of all penta pre-closed sets of X containing a subset U of X is called penta pre-closure of U and is denoted by p - Pcl(U).

Theorem 3.3: Let A and B be subsets of $(X, T_1, T_2, T_3, T_4, T_5)$ and $x \in X$

(i) U is penta pre-closed if and only if A = p - Pcl(U)

(ii) U is penta pre-open if and only if U = p - P int(U)

(iii) p - P int $(U \cup V) \supset p - P$ int $U \cup p - P$ int $V \cdot$

(iv) If $U \subset V$, then $p - Pcl(U) \subset p - Pcl(V)$.

(v) $x \in p - Pcl(A)$ if and only if $A \cap U \neq \phi$ for every penta pre-open set U containing x.

Theorem 3.4: Let *A* be a subsets of $(X, T_1, T_2, T_3, T_4, T_5)$, if there exist an penta pre-open set *U* such that $A \subset U \subset p - cl(A)$, then *A* is penta pre-open.

Theorem 3.5: In a penta topological space $(X, T_1, T_2, T_3, T_4, T_5)$, the union of any two penta preopen sets is always a penta pre-open set.

Proof: Let A and B be any two penta pre-open sets in X.

Now
$$A \cup B \subseteq p - \operatorname{int}(p - cl(A)) \cup p - \operatorname{int}(p - cl(B))$$

 $\Rightarrow A \cup B \subseteq p - int(p - cl(A \cup B))$. Hence $A \cup B$ penta pre-open sets.

Theorem 3.6: if A is penta-open sets then A is penta pre-open set.

Proof: Let A is penta closed set.

Therefore, A = p - cl(A).

Now, $A \subset p - int(A) = p - int(p - cl(A))$. Hence A is penta pre-open set.

Theorem 3.7: Let *A* and *B* be subsets of *X* such that $B \subseteq A \subseteq p - int(B)$. if *B* is penta pre-open set then *A* is also penta pre-open set.

Proof: Given *B* is penta pre-open set. so, we have $B \subseteq p - int(p - cl(B)) \subseteq p - int(p - cl(A))$.

Thus $p - int(B) \subseteq p - int(p - cl(A))$. Hence A is also penta pre-open set.

4. Penta Pre-Continuity in penta topological space

Definition 4.1: A function f defined from a penta topological space $(X, T_1, T_2, T_3, T_4, T_5)$ into another penta topological space $(Y, W_1, W_2, W_3, W_4, W_5)$ is called penta pre-continuous function if $f^{-1}(V)$ is penta pre-open set in X for each penta open set V in Y.

Example 4.2: Let
$$X = \{a, b, c, d\}$$
, $T_1 = \{X, \phi, \{a\}\}$, $T_2 = \{X, \phi, \{a, d\}\}$, $T_3 = \{X, \phi, \{b, d\}\}$,

 $T_4 = \{X, \phi, \{a, b, d\}\}, T_5 = \{X, \phi\}$

Open sets in penta topological spaces are union of all five topologies.

Then penta open sets of $X = \{X, \phi, \{a\}, \{a, d\}, \{b, d\}, \{a, b, d\}\}$

penta pre-open set of X is denoted by $p - PO(X) = \{X, \phi, \{a\}, \{a, d\}, \{a, b, d\}\}$.

Let
$$Y = \{1, 2, 3, 4\}$$
, $W_1 = \{Y, \phi, \{1, 4\}\}$, $W_2 = \{Y, \phi, \{4\}\}$, $W_3 = \{X, \phi, \{1, 2\}\}$, $W_4 = \{X, \phi, \{1, 2, 4\}\}$

$$W_5 = \{Y, \phi\}$$

penta open sets of $Y = \{Y, \phi, \{4\}, \{1, 2\}, \{1, 4\}, \{1, 2, 4\}\}$.

penta pre-open set of Y is denoted by $p - PO(Y) = \{Y, \phi, \{4\}, \{1, 2\}, \{1, 4\}, \{1, 2, 4\}\}$.

Consider the function $f: X \to Y$ is defined as

$$f^{-1}\{4\} = \{a\}, \ f^{-1}\{1,2\} = \{b,d\}, \ f^{-1}\{1,4\} = \{a,d\}, \ f^{-1}\{1,2,4\} = \{a,b,d\}, \ f^{-1}(\phi) = \phi, \ f^{-1}(Y) = X$$

Since the inverse image of each penta open set in Y under f is penta pre-open set in X. Hence f is penta pre-continuous function.

Theorem 4.3: Let $f:(X,T_1,T_2,T_3,T_4,T_5) \rightarrow (Y,W_1,W_2,W_3,W_4,W_5)$ be a penta pre-continuous open function. If *A* is an penta pre-open set of *X*, then f(A) is penta pre-open in *Y*.

Proof: First, let A be penta pre-open set in X. There exist an penta open set U in X such that $A \subset U \subset p - cl(A)$ since f is penta open function then f(U) is penta open in Y. Since f is penta continuous function, we have $f(A) \subset f(U) \subset f(p - cl(A)) \subset p - cl(f(A))$. This show that f(A) is penta pre-open in Y. Let A be penta pre-open in X. There exist an penta pre-open set U such that $U \subset A \subset (p - cl(U))$. Since f is penta-continuous function, we have by the proof of first part, f(U) is penta pre-open in X. Therefore, f(A) is penta pre-open in Y.

Theorem 4.4: Let $f:(X,T_1,T_2,T_3,T_4,T_5) \rightarrow (Y,W_1,W_2,W_3,W_4,W_5)$ be a penta pre-continuous open function. If V is an penta pre-open set of Y, then $f^{-1}(V)$ is penta pre-open in X.

Proof : First ,let V be penta pre-open set of Y. There exist an penta open set W in Y .such that $V \subset W \subset p - cl(V)$. Since f is penta open set ,we have

 $f^{-1}(V) \subset f^{-1}(W) \subset f^{-1}(p-cl(V)) \subset p-cl(f^{-1}(V))$ since *f* is penta pre-continuous function, $f^{-1}(W)$ is penta pre-open set in *X*. By theorem 3.4, $f^{-1}(V)$ is penta pre-open set in *X*. The proof of the second part is shown by using the fact of first part.

Theorem 4.5: The following are equivalent for a function

 $f:(X,T_1,T_2,T_3,T_4,T_5) \to (Y,W_1,W_2,W_3,W_4,W_5)$

- a) *f* is penta pre-continuous function ;
- b) the inverse image of each penta closed set of Y is penta pre-closed in X;
- c) For each $x \in X$ and each penta open set V in W containing f(x), there exist an penta preopen set U of X containing x such that $f(U) \subset V$;
- d) $p pcl(f^{-1}(B)) \subset f^{-1}(p cl(B))$ for every subset B of Y.
- e) $f(p-pcl(A)) \subset p-cl(f(A))$ for every subset A of X.

Theorem 4.6 : If $f:(X,T_1,T_2,T_3,T_4,T_5) \rightarrow (Y,W_1,W_2,W_3,W_4,W_5)$ and $g:(Y,W_1,W_2,W_3,W_4,W_5) \rightarrow (Z,\eta_1,\eta_2,\eta_3,\eta_4,\eta_5)$ be two penta pre-continuous function then $gof:(X,T_1,T_2,T_3,T_4,T_5) \rightarrow (Z,\eta_1,\eta_2,\eta_3,\eta_4,\eta_5)$ may not be penta pre-continuous function.

Theorem 4.7: Let $f^{-1}: (X, T_1, T_2, T_3, T_4, T_5) \rightarrow (Y, W_1, W_2, W_3, W_4, W_5)$ be bijective. Then the following conditions are equivalent:

- i) *f* is a penta pre- open continuous function.
- ii) *f* is penta pre-closed continuous function and
- iii) f^{-1} is penta pre-continuous function.

Proof:(i) \rightarrow (ii) Suppose *B* is a penta closed set in *X*. Then *X* – *B* is an penta open set in *X*. Now by (i) f(X - B) is a penta pre-open set in *Y*. Now since f^{-1} is bijective so f(X - B) = Y - f(B). Hence f(B) is a penta pre-closed set in *Y*. Therefore *f* is a penta pre-closed continuous function.

(ii) \rightarrow (iii) Let *f* is an penta pre-closed map and *B* be penta closed set of *X*. Since f^{-1} is bijective so $(f^{-1})^{-1}(B)$ which is an penta pre-closed set in *Y*. Hence f^{-1} is penta pre-continuous function.

(iii) \rightarrow (i) Let A be a penta open set in X. Since f^{-1} is a penta pre-continuous function so $(f^{-1})^{-1}(A) = f(A)$ is a penta pre-open set in Y. Hence f is penta pre-open continuous function.

Theorem 4.8: Let X and Y are two penta topological spaces. Then $f:(X,T_1,T_2,T_3,T_4,T_5) \rightarrow (Y,W_1,W_2,W_3,W_4,W_5)$ is penta semi-continuous function if one of the followings holds:

i) $f^{-1}(p - \operatorname{int}(B)) \subseteq p - s \operatorname{int}(f^{-1}(B))$, for every penta open set $B \operatorname{in} Y$.

ii) $p-scl(f^{-1}(B)) \subseteq f^{-1}(p-scl(B))$, for every penta open set B in Y.

Proof: Let *B* be any *T* open set in *Y* and if condition (i) is satisfied then $f^{-1}(p-sint(B)) \subseteq p-sint(f^{-1}(B)).$

We get $f^{-1}(B) \subseteq p - s$ int $(f^{-1}(B))$. Therefore $f^{-1}(B)$ is a penta semi-open set in X. Hence f is penta semi-continuous function. Similarly we can prove (ii).

Theorem 4.9: A function $f:(X,T_1,T_2,T_3,T_4,T_5) \rightarrow (Y,W_1,W_2,W_3,W_4,W_5)$ is called penta semiopen continuous function if and only if $f(p-sint(A)) \subseteq p-sint(f(A))$, for every penta-open set A in X.

Proof: Suppose that *f* is a penta semi-open continuous function.

since $p - sint(A) \subseteq A$ so $f(p - sint(A)) \subseteq f(A)$.

By hypothesis f(p-sint(A)) is an penta semi-open set and p-sint(f(A)) is largest penta semiopen set contained in f(A) so $f(p-sint(A)) \subseteq p-sint(f(A))$.

Conversely, suppose A is an penta open set in X. So $f(p-sint(A)) \subseteq p-sint(f(A))$.

Now since A = p - sint(A) so $f(A) \subseteq p - sint(f(A))$. Therefore f(A) is a penta semi-open set in *Y* and *f* is penta semi-open continuous function.

Theorem 4.10: A function $f:(X,T_1,T_2,T_3,T_4,T_5) \rightarrow (Y,W_1,W_2,W_3,W_4,W_5)$ is called penta semi - closed continuous function if and only if $p-scl(f(A)) \subseteq f(p-scl(A))$, for every penta closed set *A* in *X*.

Proof: Suppose that f is a penta semi-closed continuous function. since $A \subseteq p - scl(A)$ so $f(A) \subseteq f(p - scl(A))$. By hypothesis, f(p - scl(A)) is a penta semi-closed set and p - scl(f(A)) is smallest penta semi-closed set containing f(A) so $p - scl(f(A)) \subseteq f(p - scl(A))$.

Conversely, suppose A is an penta closed set in X. So $p - scl(f(A)) \subseteq f(p - scl(A))$.

Since A = p - scl(A) so $p - scl(f(A)) \subseteq f(A)$. Therefore f(A) is a penta semi-closed set in Y and f is penta semi-closed continuous function.

CONCLUSION:

In this paper the idea of penta semi-open sets, penta semi-continuous function, penta pre-open sets and penta pre-continuous function in penta topological spaces were studied .

REFERENCES

[1] Jelic M. (1990), A decomposition of pairwise continuity. J. Inst. Math. Comput. Sci Math.

Ser. 3, 25-29.

- [2] Kelly J.C (1963.), Bitopological spaces, Proc. LondonMath.Soc., 3 PP. 17-89.
- [3] Khan M. S. and Khan G. A.(2018), p-Continuity and p-Homeomorphism in Penta Topological Spaces, European International Journal of Science and Technology, Vol. 7, No. 5, 1-8.
- [4] Kovar M.,(2000).On 3-Topological version of Thet- Reularity, Internat. J. Matj, Sci., 23(6), 393-398.
- [5] Levine N.(1963). Semi-open sets and semi-continuity in topological spaces, Amer. Math., 70, 36-41.
- [6] Maheshwari S.N. & Prasad R. (1977). Semi-open sets and semi-continuous functions in bitopological spaces. Math. Notae. 26, 29-37.
- [7] Mashhour A.S., Abd El-Monsef, M.E. and El. Deep. S. N.(1981), On precontinuous and weak Precontinous mappings, Proc. Math. Phys. Soc. Egyp , vol 53,47-53.
- [8] Mukundan D.V.(2013), Introduction to penta topological spaces, Int. Journal of Scientific and Engg. Research, 4(7) 2483-2485.
- [9] Pacifica G. P & Fathima S.S.(2019), Some Topological Concepts in Penta Topological space, International Journal of Mathematics Trends and Technology, Volume 65 Issue 2-February, 109-116.
- [10] Palaniammal S. (2011), Study of Tri topological spaces, Ph. D Thesis.