ON ALPHA ^ GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES

Dr.K.Meena¹ & Dr.V.P.Anuja²

¹ Assistant Professor and Head, Department of Mathematics, Arulmigu Palaniandavar Arts College for Women, Palani, Tamilnadu, India.
² Assistant Professor of Mathematics, Arulmigu Palaniandavar Arts College for Women, Palani, Tamilnadu, India.

ABSTRACT

The aim of this paper is to introduce a new class of sets called α^g - closed sets in topological spaces and to study their properties. Further, we define and study α^g - open sets α^g - continuity.

Key Words: α^g - closed sets, α^g - open sets, α^g continuous.

1. INTRODUCTION

In this paper, we introduce a new class of sets called alpha ^ generalized - closed sets (briefly α^g - closed sets) and we study their basic properties. We recall the following definitions, which will be used often throughout this paper.

2. PRELIMINARIES

Throughout this paper, X, Y, Z denote the topological spaces (X, τ),(Y, σ) and (Z, η) respectively, on which no separation axioms are assumed.

Definition 2.1: A subset A of a space X is called
(1) a pre-open set if A ⊆ int(cl(A)) and a pre-closed set if cl(int(A)) ⊆ A.
(2) a semi-open set if A ⊆ cl(int(A)) and a semi-closed set if int(cl(A)) ⊆ A.
(3) an α-open set if A⊆int(cl(int(A))) and a α-closed set if cl(int(cl(A)))⊆ A.
(4) a semi-preopen set (=β-open) if A ⊆ cl(int(cl(A))) and a semi-pre closed set (β-closed) if int(cl(int(A))) ⊆ A.

The semi-closure (resp. α-closure) of a subset A of (X,τ) is denoted by scl(A) (resp. αcl(A) and spcl(A))and is the intersection of all semi-closed (resp. α-closed and semi-pre closed) sets containing A.
Definition 2.2: A subset A of X is called
1. a generalized closed (briefly g-closed) [9] set iff $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2. Strongly generalized closed (briefly g^*-closed) [20] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
3. a regular open [18] set if $A = \text{int}(\text{cl}(A))$ and regular closed [18] set if $A = \text{cl}(\text{int}(A))$.
4. a semi generalized closed (briefly sg-closed) [4] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is Semiopen in X.
5. a generalized semi closed (briefly gs-closed) [2] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
6. a generalized semi-pre closed (briefly gsp-closed) [5] if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
7. a regular generalized closed (briefly rg-closed) [15] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
8. a generalized preclosed (briefly gp-closed) [10] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
9. a generalized pre regular closed (briefly gpr-closed) [7] if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
10. a weakly closed (briefly w-closed) [16] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.
11. a regular weakly closed (briefly rw-closed) [3] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen in X.
12. a weakly generalized semi closed (briefly wg-closed) [13] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
13. a regular weakly generalized semi closed (briefly rwg-closed) [13] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
14. a regular generalized weakly semi closed (briefly rgw-closed) [17] if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.
15. a regular generalized closed (briefly r^g-closed) [22] if $\text{gcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open.
16. g^* - closed set [23] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).
17. ag^* - closed set [24] if $\text{acl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
18. ag^* - closed set [25] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).
19. sg^* - closed set [26] if $\text{acl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
20. wg^* - closed set [27] if $\text{acl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).
21. wgg^* - closed set [27] if $\text{acl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
22. ψ^* - closed set [28] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is ψ-open in (X, τ).
23. ψ^* - closed set [29] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
24. $g^*\psi^*$ - closed set [30] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
25. ψ^* - closed set [31] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is g^*-open in (X, τ).
26. $\omega\psi$ - closed set [32] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).
27. $g\omega^*$ - closed set [32] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).
28. ω^* - closed set [33] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).
29. $g\omega$ - closed set [33] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in (X, τ).
30. $g^*\omega$ - closed set [35] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in (X, τ).
The complements of the above mentioned closed sets are their respective open sets.

Definition 2.3: A map \(f : X \rightarrow Y \) is said to be
1. a continuous function\([1]\) if \(f^{-1}(V) \) is closed in \(X \) for every closed set \(V \) in \(Y \).
2. a pre continuous \([11]\) if \(f^{-1}(V) \) is pre closed in \(X \) for every closed set \(V \) in \(Y \).
3. a \(\alpha \)-continuous function\([34]\) if \(f^{-1}(V) \) is \(\alpha \)-closed in \(X \) for every closed set \(V \) in \(Y \).
4. a gs -continuous \([1]\) if \(f^{-1}(V) \) is gs closed in \(X \) for every closed set \(V \) in \(Y \).
5. a \(\alpha g \)-continuous \([7]\) if \(f^{-1}(V) \) is \(\alpha g \) - closed in \(X \) for every closed set \(V \) in \(Y \).
6. a rwg-continuous\([13]\) if \(f^{-1}(V) \) is rwg- closed in \(X \) for every closed set \(V \) in \(Y \).
7. a rgw-continuous\([13]\) if \(f^{-1}(V) \) is rgw- closed in \(X \) for every closed set \(V \) in \(Y \).
8. a swg –continuous\([13]\) if \(f^{-1}(V) \) is swg- closed in \(X \) for every closed set \(V \) in \(Y \).

3. **Alpha ^ Generalized Closed Sets** (\(\alpha^g \) - closed sets)

Definition 3.1: A subset \(A \) of \((X, \tau)\) is called a \(\alpha^g \)generalized closed (briefly \(\alpha^g \) closed)
if \(\text{gcl}(A) \subset U \), whenever \(A \subset U \) and \(U \) is \(\alpha \)-open in \(X \).
We denote the family of all \(\alpha^g \) closed sets in space \(X \) by \(\alpha^GC(X) \).

Theorem 3.2: Every closed set of a topological space \((X, \tau)\) is \(\alpha^g \) closed set.

Proof: Let \(A \subset X \) be a closed set and \(A \subset U \) where \(U \) be \(\alpha \)-open. Since \(A \) is closed and every closed set is g-closed, \(\text{gcl}(A) \subset \text{cl}(A) = A \subset U \). Hence \(A \) is an \(\alpha^g \) closed set.

Remark 3.3: The converse of the above theorem need not be true as seen in the following example.

Example 3.4: Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\} \). Let \(A = \{a, c\} \) then \(A \) is an \(\alpha^g \) closed set but it is not a closed set.

Theorem 3.5: Every g^\alpha -closed set is \(\alpha^g \) closed.

Proof: Let \(A \) be a g^\alpha -closed set. Let \(A \subset U \) where \(U \) is \(\alpha \)-open. Since every \(\alpha \)-open set is semi open and \(A \) is g^\alpha closed, \(\text{cl}(A) \subset U \). Every closed set is g -closed therefore \(\text{gcl}(A) \subset \text{cl}(A) \subset U \). Hence \(A \) is \(\alpha^g \) closed.

Remark 3.6: The converse of the above theorem need not be true as seen in the following example.

Example 3.7: Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\} \). Let \(A = \{a, c\} \) then \(A \) is \(\alpha^g \) closed set but it is not a g^\alpha -closed set.

Theorem 3.8: Every \(\alpha^g \) closed set \(\alpha g \) is closed.

Proof: Let \(A \) be \(\alpha^g \) closed. Let \(A \subset U \) and \(U \) be open. Since every open set is \(\alpha \)-open set and \(A \) is \(\alpha^g \) closed set, \(\text{acl}(A) \subset U \). Hence \(A \) is \(\alpha g \) closed.

Remark 3.9: The converse of the above theorem need not be true as seen in the following example.

Example 3.10: Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\} \). Let \(A = \{b\} \) then \(A \) is \(\alpha g \) -closed set but it is not a \(\alpha^g \) -closed set.

Theorem 3.11: Every g^*closed set is \(\alpha^g \) closed.
Proof: Let \(A \) be \(g^* \)-closed in \((X, \tau)\). Let \(A \subseteq U \) where \(U \) is \(\alpha \)-open. Since every \(\alpha \)-open set is \(g^* \)-open and \(A \) is \(g^* \)-closed, \(\text{cl}(A) \subseteq U \). Every closed set is \(g \)-closed, then \(g\text{cl}(A) \subseteq \text{cl}(A) \subseteq U \). Hence \(A \) is \(\alpha^g \)-closed.

Remark 3.12: The converse of the above theorem need not be true as seen in the following example.

Example 3.13: Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\} \). Let \(A = \{a, c\} \) then \(A \) is \(\alpha^g \)-closed set but it is not a \(g^* \)-closed set.

Theorem 3.14: Every \(ag^* \)-closed set is \(\alpha^g \)-closed.

Let \(A \) be \(ag^* \)-closed in \((X, \tau)\). Let \(A \subseteq U \) where \(U \) is \(\alpha \)-open. Since \(A \) is \(ag^* \)-closed, \(\text{cl}(A) \subseteq U \). Every closed set is \(g \)-closed, then \(g\text{cl}(A) \subseteq \text{cl}(A) \subseteq U \). Hence \(A \) is \(\alpha^g \)-closed.

Remark 3.15: The converse of the above theorem need not be true as seen in the following example.

Example 3.16: Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}\} \). Let \(A = \{a, b\} \) then \(A \) is \(\alpha^g \)-closed set but it is not a \(ag^* \)-closed set.

Example 3.17: Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\} \). Then
1. \(r\text{wg} \)-closed \(= \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\} \)
2. \(r\text{g} \)-closed \(= \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\} \)
3. \(\alpha g^* \)-closed \(= \{X, \phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\} \)
4. \(\psi g^* \)-closed \(= \{X, \phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\} \)
5. \(r\text{rg} \)-closed \(= \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\} \)
6. \(r\text{rg} \)-closed \(= \{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\} \)
7. \(\alpha^g \)-closed \(= \{X, \phi, \{c\}, \{a, c\}, \{b, c\}\} \)

Theorem 3.18:
1. Every \(\alpha^g \)-closed set is \(r\text{wg} \)-closed.
2. Every \(\alpha^g \)-closed set is \(r\text{g} \)-closed.
3. Every \(\alpha^g \)-closed set is \(-\alpha g^* \)-closed.
4. Every \(\alpha^g \)-closed set is \(-\psi g^* \)-closed.
5. Every \(\alpha^g \)-closed set is \(-\psi g^* \)-closed.
6. Every \(\alpha^g \)-closed set is \(-\alpha^g \)-closed.

Proof: Straight forward.

Remark 3.19: The converse of the above theorem need not be true as seen in the following examples.

In Example 3.14, \(A = \{a, b\} \), then \(A \) is \(r\text{wg} \)-closed but not \(\alpha^g \)-closed.
In Example 3.14, \(B = \{b\} \), then \(B \) is \(r\text{g} \)-closed but not \(\alpha^g \)-closed.
In Example 3.14, \(B = \{b\} \), then \(B \) is \(\psi g^* \)-closed but not \(\alpha^g \)-closed.
In Example 3.14, \(B = \{b\} \), then \(B \) is \(\psi g^* \)-closed but not \(\alpha^g \)-closed.
In Example 3.14, \(B = \{a\} \), then \(B \) is \(\alpha^g \)-closed but not \(\alpha^g \)-closed.
Remark 3.20: α^g closed sets and semi closed sets are independent to each other as seen from the following examples.

Example 3.21:
* Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{b\}$, A is semi closed but not α^g closed and the subset $\{a, b, d\}$ in X is α^g closed but not semi closed.

Remark 3.22: α^g closed sets and pre closed sets are independent to each other as seen from the following examples.

Example 3.23:
* Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{a\}$, then A is α^g closed but not pre closed.
* Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{c\}$, then A is preclosed but not an α^g closed set.

Remark 3.24: α^g closed sets and semi-preclosed sets are independent to each other as seen from the following example.

Example 3.25:
Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. The subset $\{a\}$ is semi- preclosed but not α^g closed and the subset $\{a, b, d\}$ is α^g closed but not semi- preclosed.

Remark 3.26: α^g closed sets and $g\alpha^*$ closed sets are independent to each other as seen from the following examples.

Example 3.27:
Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{c\}$, then A is $g\alpha^*$ closed but not an α^g closed set in X and the subset $\{a, d\}$ is an α^g closed set but not a $g\alpha^*$ closed set in X.

Remark 3.28: The concepts of α^g closed sets and $\alpha\psi$ closed sets are independent of each other as seen from the following examples.

Example 3.29:
Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $B = \{b\}$, then B is $\alpha\psi$ closed but it is not an α^g closed set and the subset $\{a, c\}$ is an α^g closed set but not $\alpha\psi$ closed set.

Remark 3.30: The concepts of α^g closed sets and sg closed sets are independent of each other as seen from the following examples.

Example 3.31:
Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $B = \{b\}$, then B is sg closed but it is not an α^g closed set and the subset $\{a, c\}$ is an α^g closed set but not sg closed set.

Remark 3.32: The concepts of α^g closed sets and α closed sets are independent of each other as seen from the following examples.

Example 3.33:
* Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{a, b, d\}$, then A is α^g closed but not α-closed.
* Let \(X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Let \(A = \{c\} \), then \(A \) is \(\alpha \)-closed but not an \(\alpha^g \)-closed set.

Remark 3.34: \(\alpha^g \)-closed sets and \(s\alpha^g \)-closed sets are independent to each other as seen from the following examples.

Example 3.35:
Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\} \). The subset \(\{a, b\} \) is \(s\alpha^g \)-closed set but not an \(\alpha^g \)-closed set and the subset \(\{b, c\} \) is \(\alpha^g \)-closed set but not \(s\alpha^g \)-closed.

Remark 3.36: \(\alpha^g \)-closed sets and \(w\alpha \)-closed sets are independent to each other as seen from the following examples.

Example 3.37:
Let \(X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\} \). The subset \(\{b\} \) is \(w\alpha \)-closed set but not an \(\alpha^g \)-closed set and the subset \(\{a, c\} \) is \(\alpha^g \)-closed set but not \(w\alpha \)-closed.

Remark 3.38: The above discussions are shown in the following diagram.

Remark 3.39: The following is the diagrammatic representation of independent concepts of the sets with \(\alpha^g \)-closed sets.

Theorem 3.40: Let \(A \) be an \(\alpha^g \)-closed set in a topological space \(X \). Then \(gcl(A) \) -- \(A \) contains no non-empty \(\alpha \)-closed set in \(X \).

Proof: Let \(F \) be a \(\alpha \)-closed set such that \(F \subset gcl(A) \) -- \(A \). Then \(F \subset X-A \) implies \(A \subset X-F \). Since \(A \) is \(\alpha^g \)-closed and \(X-F \) is \(\alpha \)-open, then \(gcl(A) \subset X-F \). That is \(F \subset X-gcl(A) \). Hence \(F \subset \)
gcl(A) \cap (X \setminus \text{gcl}(A)) = \phi. \text{ Thus } F = \phi, \text{ whence gcl}(A) - A \text{ does not contain nonempty } \alpha\text{-closed set.}

Remark 3.41: The converse of the above theorem need not be true, that means if gcl(A) - A contains no nonempty \(\alpha \)-closed set, then A need not to be an \(\alpha^g \) closed as seen in the following example.

Example 3.42:

Let \(X = \{a, b, c, d\} \), \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\} \). Let A = \{b\}. gcl(A) - A = \{d\}, it does not contain non-empty \(\alpha \)-closed set in X. But A = \{b\} is not an \(\alpha^g \) closed set.

Theorem 3.43: The finite union of two \(\alpha^g \) closed sets are \(\alpha^g \) closed.

Proof: Assume that A and B are \(\alpha^g \) closed sets in X. Let A \(\cup \) B \(\subset \) U where U is \(\alpha \)-open. Then A \(\subset \) U and B \(\subset \) U. Since A and B are \(\alpha^g \) closed, gcl(A) \(\subset \) U and gcl(B) \(\subset \) U. Then gcl(A \(\cup \) B) = gcl(A) \(\cup \) gcl(B) \(\subset \) U. Hence A \(\cup \) B is \(\alpha^g \) closed.

Remark 3.44: The intersection of two \(\alpha^g \) closed set in X need not be an \(\alpha^g \) closed set as seen in the following example.

Example 3.45:

Let \(X = \{a, b, c\} \), \(\tau = \{X, \phi, \{a\}, \{b\}\} \) then \(\alpha^g = \{X, \phi, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\} \).

If A = \{a, b\} and B = \{a, c\}. Then A and B are \(\alpha^g \) closed sets. But A \(\cap \) B = \{a\} is not an \(\alpha^g \) closed set.

Theorem 3.46: If A is an \(\alpha^g \) closed subset of X such that A \(\subset \) B \(\subset \) gcl(A), then B is an \(\alpha^g \) closed set.

Proof: Let B \(\subset \) U where U is \(\alpha \)-open. Then A \(\subset \) B implies A \(\subset \) U. Since A is \(\alpha^g \) closed, gcl(A) \(\subset \) U. By hypothesis gcl(B) \(\subset \) gcl(gcl(A)) = gcl(A) \(\subset \) U. Hence B is \(\alpha^g \) closed.

Remark 3.47: The converse of the above theorem need not be true as seen in the following example.

Example 3.48:

Let X = \{a, b, c, d\}, \(\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \). Let A = \{d\} and B = \{a, d\}. Then A and B are \(\alpha^g \) closed sets. But A \(\cap \) B = \{a\} is not a subset of gcl(A).

4. Regular \(\wedge \) Generalized Open Set:

Definition 4.1: A set A \(\subset \) X is called alpha \(\wedge \) generalized open (\(\alpha^g \) open) set if and only if its compliment is alpha \(\wedge \) generalized closed. The collection of all \(\alpha^g \) open sets is denoted by \(\alpha^G(X) \).

5. \(\alpha^g \) Continuous and \(\alpha^g \) Irresolute Functions:

Definition 5.1: A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called \(\alpha^g \) continuous if every \(f^{-1}(V) \) is \(\alpha^g \) closed in X for every closed set V of Y.

Definition 5.2: A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called \(\alpha^g \) irresolute if every \(f^{-1}(V) \) is \(\alpha^g \) closed in X for every \(\alpha^g \) closed set V of Y.

Example 5.3: Let X = \{a, b, c\}, \(\tau = \{X, \phi, \{a\}\} \) and Y = \{a, b\},
\[\sigma = \{ Y, \phi, \{ a \} \} \]. Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a, f(b) = b, f(c) = c \). Here the inverse image of the closed sets in \(Y \) are \(\alpha^g \) closed sets in \(X \). Hence \(f \) is \(\alpha^g \) continuous.

Example 5.4: Let \(X = \{ a, b, c, d \} \), \(\tau = \{ \phi, X, \{ a, b \}, \{ c \}, \{ a, b, c \} \} \) and \(Y = X \), \(\sigma = \{ Y, \phi, \{ a \}, \{ c \}, \{ a, c \}, \{ a, b \}, \{ a, b, c \} \} \). Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a, f(b) = b, f(c) = c, f(d) = d \). The inverse image of every \(\alpha^g \) closed set in \(Y \) is \(\alpha^g \) closed set in \(X \). Hence \(f \) is \(\alpha^g \) continuous.

Remark 5.5: Every \(\alpha^g \) irresolute function is \(\alpha^g \) continuous but the converse is not true as seen in the following example.

Example 5.6: In example 5.3, \(f \) is \(\alpha^g \) continuous but not \(\alpha^g \) irresolute.

Remark 5.7: Every continuous function is \(\alpha^g \) continuous. But the converse is not true as seen in the following example.

Example 5.8: Let \(X = \{ a, b, c, d \} \), \(\tau = \{ X, \phi, \{ a \}, \{ b \}, \{ a, b \}, \{ a, b, c \} \} \) and \(Y = X \), \(\sigma = \{ Y, \phi, \{ a \}, \{ c \}, \{ a, c \}, \{ a, b \}, \{ a, c, d \} \} \). Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) the identity mapping. Then \(f \) is \(\alpha^g \) continuous but not \(\alpha^g \) irresolute.

Theorem 5.9: Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) be any two functions. Then

(i) \(\alpha^g \) continuous if \(g \) is continuous and \(f \) is \(\alpha^g \) -continuous

(ii) \(\alpha^g \) irresolute if \(g \) is \(\alpha^g \) irresolute and \(f \) is \(\alpha^g \) irresolute.

(iii) \(\alpha^g \) continuous if \(g \) is \(\alpha^g \) continuous and \(f \) is \(\alpha^g \) irresolute.

Proof:

(i) Let \(V \) be any closed set in \((Z, \eta) \). Then \(f^{-1}(V) \) is closed in \((Y, \sigma) \), since \(g \) is continuous. By hypothesis \(f^{-1}(g^{-1}(V)) \) is \(\alpha^g \) closed in \((X, \tau) \). Hence \(g \) is \(\alpha^g \) continuous.

(ii) Let \(V \) be \(\alpha^g \) closed set in \((Z, \eta) \). Since \(g \) is \(\alpha^g \) irresolute, \(g^{-1}(V) \) is \(\alpha^g \) closed in \((Y, \sigma) \). As \(f \) is \(\alpha^g \) irresolute, \(f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \) is \(\alpha^g \) closed in \((X, \tau) \). Hence \(g \) is \(\alpha^g \) irresolute.

(iii) Let \(V \) be closed in \((Z, \eta) \). Since \(g \) is \(\alpha^g \) continuous, \(g^{-1}(V) \) is \(\alpha^g \) closed in \((Y, \sigma) \). As \(f \) is \(\alpha^g \) irresolute, \(f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \) is \(\alpha^g \) closed in \((X, \tau) \). Hence \(g \) is \(\alpha^g \) continuous.

REFERENCES

[7]. Gnanambal Y, On generalized pre regular closed sets in topological spaces, Indian J. Pure

