ON ALPHA ^ GENERALIZED CLOSED SETS IN TOPOLOGICAL SPACES

ISSN: 1673-064X

Dr.K.Meena¹ & Dr.V.P.Anuja²

Assistant Professor and Head,
Department of Mathematics,
Arulmigu Palaniandavar Arts College for Women, Palani,
Tamilnadu,India.

² Assistant Professor of Mathematics, Arulmigu Palaniandavar Arts College for Women, Palani , Tamilnadu, India.

ABSTRACT

The aim of this paper is to introduce a new class of sets called α ^g - closed sets in topological spaces and to study their properties. Further, we define and study α ^g - open sets α ^g - continuity.

Key Words: α ^og - closed sets, α ^og - open sets, α ^og continuous.

1. INTRODUCTION

In 1970, Levine [9] introduced the concept of generalized closed set in the topological spaces and a class of topological spaces called T1/2 spaces. Extensive research on generalizing closedness was done in recent years by many mathematicians. In 1990, S.P. Arya and T.M. Nour [2] define generalized semi-open sets, generalized semi-closed sets. In 1993 Maki H, Devi R and Balachandran K [21] introduced generalized alpha closed (gα-closed) sets. In 2000, A. Pushpalatha[16] introduced a new class of closed sets called weakly closed(w- closed) sets .In 2007, S.S.Benchalli and R. S. Wali[3] introduced the class of set called regular w-closed(rw-closed) sets in topological spaces.

Recently Viswanathan,A.,and Ramasamy,K., (2009),introduced the concept of generalized closed sets and weakly closed sets in topological spaces, (wg α -closed sets. and wag closed sets). In this paper, we introduce a new class of sets called alpha ^ generalized - closed sets (briefly α -g -closed sets) and we study their basic properties. We recall the following definitions, which will be used often throughout this paper.

2. PRELIMINARIES

Throughout this paper, X, Y, Z denote the topological spaces (X, τ) , (Y, σ) and (Z, η) respectively, on which no separation axioms are assumed.

Definition 2.1: A subset A of a space X is called

- (1) a pre-open set if $A \subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$.
- (2) a semi-open set if $A \subseteq cl(int(A))$ and a semi-closed set if $int(cl(A)) \subseteq A$.
- (3) an α -open set if $A\subseteq int(cl(int(A)))$ and a α -closed set if $cl(int(cl(A)))\subseteq A$.
- (4) a semi-preopen set (= β -open) if $A \subseteq cl(int(cl(A)))$ and a semi-pre closed set (β -closed) if $int(cl(int(A))) \subseteq A$.

The semi-closure (resp. α -closure) of a subset A of (X,τ) is denoted by scl(A) (resp. $\alpha cl(A)$ and spcl(A))and is the intersection of all semi-closed (resp. α -closed and semi-pre closed) sets containing **A.**

Definition 2.2: A subset A of X is called

- 1. a generalized closed (briefly g-closed) [9] set iff $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 2. Strongly generalized closed (briefly g^* closed)[20] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is gopen in X

- 3. a regular open [18] set if A = int(cl(A)) and regular closed[18] set if A = cl(int(A)).
- 4. a semi generalized closed (briefly sg closed)[4] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is Semiopen in X.
- 5. a generalized semi closed (briefly gs closed)[2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 6. a generalized semi-pre closed (briefly gsp closed)[5] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 7. a regular generalized closed (briefly rg closed)[15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 8. a generalized preclosed (briefly gp closed) [10]if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 9. a generalized pre regular closed (briefly gpr closed)[7] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 10. a weakly closed (briefly w closed)[16] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semiopen in X.
- 11. a regular weakly closed (briefly rw closed)[3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semiopen in X.
- 12. a weakly generalized semi closed (briefly wg closed) [13] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 13. a regular weakly generalized semi closed (briefly rwg closed)[13] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.
- 14. a regular generalized weakly semi closed (briefly rgw closed)[17] if $cl(int(A) \subseteq U$ whenever $A \subseteq U$ and U is regular semi-open in X.
- 15. a regular open. generalized closed (r og closed)[22] if gcl(A) ⊆U whenever A U and U is regular open.
- 16. g^ closed set [23] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is semi-open in (X, τ) .
- 17. $\alpha g^{\hat{}}$ closed set [24] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^{\hat{}}$ -open in (X, τ) .
- 18. α g *- closed set [25] if cl(A)⊆U whenever A⊆U and U is α -open in (X, τ).
- 19. $s\alpha g^*$ closed set [26] if $\alpha cl(A)\subseteq U$ whenever $A\subseteq U$ and U is g^* -open in (X, τ) .
- 20. $wg\alpha$ -closed set [27] if $\alpha cl(int(A))\subseteq U$ whenever $A\subseteq U$ and U is α -open in (X, τ) .
- 21. wag-closed set [27] if α cl(int(A)) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- 22. ψ -closed set [28] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is sg-open in (X, τ) .
- 23. ψg -closed set [29] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 24. g * ψ -closed set [30] if ψ cl(A) \subseteq U whenever A \subseteq Uand U is g-open in (X, τ).
- 25. ψ g^ closed set [31] if ψ cl(A)⊆U whenever A⊆U and U is g^ -open in (X, τ).
- 26. $\alpha \psi$ closed set [32] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .
- 27. $g\alpha$ *- closed set [25] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is α -open in (X, τ) .
- 28. αg closed set [33] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- 29. $g\alpha$ closed set [21] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is α -open in (X, τ) .
- 30. r^g- closed set [35] if $gcl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular open in (X, τ) .

The complements of the above mentioned closed sets are their respective open sets.

ISSN: 1673-064X

Definition 2.3: A map $f: X \rightarrow Y$ is said to be

- 1. a continuous function[1]if $f^{-1}(V)$ is closed in X for every closed set V in Y.
- 2. a pre continuous [11] if $f^{-1}(V)$ is pre closed in X for every closed set V in Y.
- 3. a α -continuous function[34]if $f^{-1}(V)$ is α -closed in X for every closed set V in Y.
- 5. a gs -continuous [1] if $f^{-1}(V)$ is gs closed in X for every closed set V in Y.
- 6. a αg -continuous[7] if $f^{-1}(V)$ is αg closed in X for every closed set V in Y.
- 7. a rwg-continuous[13] if $f^{-1}(V)$ is rwg-closed in X for every closed set V in Y.
- 8. a rgw-continuous[13] if $f^{-1}(V)$ is rgw-closed in X for every closed set V in Y.
- 9. a swg –continuous[13] if $f^{-1}(V)$ is swg- closed in X for every closed set V in Y.

3. Alpha ^ Generalized Closed Sets (α ^g - closed sets)

Definition 3.1: A subset A of (X,τ) is called a alpha ^generalized closed (briefly α ^g closed) if $gcl(A) \subset U$, whenever $A \subset U$ and U is α -open in X.

We denote the family of all α ^og closed sets in space X by α ^oGC(X).

Theorem 3.2: Every closed set of a topological space (X,τ) is α ^og closed set.

Proof: Let $A \subset X$ be a closed set and $A \subset U$ where U be α -open. Since A is closed and every closed set is g-closed, $gcl(A) \subset cl(A) = A \subset U$. Hence A is an α ^og closed set.

Remark 3.3: The converse of the above theorem need not be true as seen in the following example.

Example 3.4: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $A = \{a, c\}$ then A is an α 'g closed set but it is not a closed set.

Theorem 3.5: Every g^{-} -closed set is α^{-} g closed.

Proof: Let A be a g^-closed set. Let $A \subset U$ where U is α -open. Since every α -open set is semi open and A is g^ closed, $cl(A) \subset U$. Every closed set is g -closed therefore $gcl(A) \subset cl(A) \subset U$. Hence A is α g closed.

Remark 3.6: The converse of the above theorem need not be true as seen in the following example.

Example 3.7: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $A = \{a, c\}$ then A is α g closed set but it is not a g^-closed set.

Theorem 3.8: Every α° g closed set αg is closed.

Proof: Let A be α ^g closed. Let A \subset U and U be open. Since every open set is α -open set and A is α ^g closed set, α cl(A) \subset U, Hence A is α g closed.

Remark 3.9: The converse of the above theorem need not be true as seen in the following example.

Example 3.10: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. Let $A = \{b\}$ then A is αg -closed set but it is not a αg -closed set.

Theorem 3.11: Every g*closed set is α^g closed.

Proof: Let A be g*closed in (X,τ) . Let $A \subset U$ where U is α open. Since every α open set is gopen and A is g*closed, $cl(A) \subset U$. Every closed set is g-closed, then $gcl(A) \subset cl(A) \subset U$. Hence A is α ^g closed.

Remark 3.12: The converse of the above theorem need not be true as seen in the following example.

Example 3.13: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$. Let $A = \{a, c\}$ then A is α^g closed set but it is not a g^* -closed set.

Theorem 3.14: Every αg^* closed set is $\alpha^{\circ}g$ closed.

Let A be αg^* closed in (X,τ) . Let $A \subset U$ where U is α open. Since A is αg^* closed, $cl(A) \subset U$. Every closed set is g-closed, then $gcl(A) \subset cl(A) \subset U$. Hence A is αf closed.

Remark 3.15: The converse of the above theorem need not be true as seen in the following example.

Example 3.16: Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$. Let $A = \{a, b\}$ then A is αg closed set but it is not a αg -closed set.

```
Example 3.17: Let X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}. Then 1.rwg closed =\{X, \phi, \{a\}, \{b\}\} \{c\}, \{a, b\}\} \{a, c\}, \{b, c\}\} 3.rgw closed =\{X, \phi, \{a\}, \{b\}\} \{c\}, \{a, b\}\} \{a, c\}, \{b, c\}\} 5.\alphag^ closed ==\{X, \phi, \{b\}\} \{c\}, \{a, c\}, \{b, c\}\} 6.w\alphag closed =\{X, \phi, \{b\}\} \{c\}, \{a, c\}, \{b, c\}\} 7.\psig^ closed =\{X, \phi, \{b\}\} \{c\}, \{a, c\}, \{b, c\}\} 8. r^g closed =\{X, \phi, \{a\}, \{b\}\} \{c\}, \{a, b\}\} \{a, c\}, \{b, c\}\} 9.\alpha9 closed =\{X, \phi, \{c\}, \{a, c\}, \{b, c\}\}
```

Theorem 3.18:

- 1. Every α closed set is rwg closed.
- 2. Every α closed set is rgw closed.
- 3.Every α ^og closed set is $-\alpha$ g^o closed.
- 4. Every α closed set is -wag closed
- 5. Every α closed set is ψ g closed
- 6. Every α closed set is r g closed

Proof: Straight forward.

Remark 3.19: The converse of the above theorem need not be true as seen in the following examples.

```
In Example 3.14, A = \{a,b\}, then A is rwg closed but not \alpha^g closed
```

In Example 3.14, $B = \{b\}$, then B is rgw closed but not α ^g closed set.

In Example 3.14, $B = \{b\}$, then B is αg^{\wedge} closed but not $\alpha^{\wedge} g$ closed.

In Example 3.14, $B = \{b\}$, then B is wag closed but not α^g closed.

In Example 3.14, $B = \{b\}$, then B is $\psi g^{\hat{}}$ closed but not $\alpha^{\hat{}}g$ closed.

In Example 3.14, $B = \{a\}$, then B is r^g closed but not α g closed.

Remark 3.20: α ^og closed sets and semi closed sets are independent to each other as seen from the following examples.

Example 3.21:

* Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{b\}$, A is semi closed but not $\alpha^{\circ}g$ closed and the subset $\{a, b, d\}$ in X is $\alpha^{\circ}g$ closed but not semi closed.

Remark 3.22: α ^og closed sets and pre closed sets are independent to each other as seen from the following examples.

Example 3.23:

* Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ Let $A = \{a, b, d\}$, then A is α g closed but not preclosed.

* Let $X = \{a, b, c,d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}.$ Let $A = \{c\}$, then A is preclosed but not an α 'g closed set.

Remark 3.24: α ^og closed sets and semi-preclosed sets are independent to each other as seen from the following example.

Example 3.25:

Let $X = \{a, b, c,d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b,c\}\}\}$. The subset $\{a\}$ is semi- preclosed but not α^g closed and the subset $\{a, b,d\}$ is α^g closed but not semi- preclosed.

Remark 3.26: α ^g closed sets and $g\alpha$ * closed sets are independent to each other as seen from the following examples.

Example 3.27:

Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}.$ Let $A = \{c\}$, then A is $g\alpha^*$ closed but not an α^*g closed set in X and the subset $\{a, d\}$ is an α^*g closed set but not a $g\alpha^*$ closed in X.

Remark 3.28: The concepts of α ^og closed sets and α ψ closed sets are independent of each other as seen from the following examples.

Example 3.29:

Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$.. Let $B = \{b\}$, then B is $\alpha \psi$ closed but it is not an αg closed set and the subset $\{a, c\}$ is an αg closed set but not $\alpha \psi$ closed set.

Remark 3.30: The concepts of α ^og closed sets and sg closed sets are independent of each other as seen from the following example.

Example 3.31:

Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$.. Let $B = \{b\}$, then B is sg closed but it is not an α^g closed set and the subset $\{a, c\}$ is an α^g closed set but not sg closed set.

Remark 3.32: The concepts of α ^g closed sets and α closed sets are independent of each other as seen from the following examples.

Example 3.33:

*Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ Let $A = \{a, b, d\}$, then A is α^g closed but not α -closed.

* Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{c\}$, then A is α -closed but not an α 'g closed set.

ISSN: 1673-064X

Remark 3.34: α ^{α} closed sets and α ^{α} closed sets are independent to each other as seen from the following examples.

Example 3.35:

Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. The subset $\{a, b\}$ is $s\alpha g^*$ closed set but not an α^g closed set and the subset $\{b, c\}$ is α^g closed set but not $s\alpha g^*$ closed.

Remark 3.36: α closed sets and wg α closed sets are independent to each other as seen from the following examples.

Example 3.37:

VOLUME 16 ISSUE 7

Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}, \{a, b\}\}$. The subset $\{b\}$ is $wg\alpha$ closed set but not an α^g closed set and the subset $\{a, c\}$ is α^g closed set but not $wg\alpha$ closed.

Remark 3.38: The above discussions are shown in the following diagram.

Remark 3.39: The following is the diagrammatic representation of independent concepts of the sets with α ^og closed sets.

Theorem 3.40: Let A be an α 'g closed set in a topological space X. Then gcl(A) - A contains no non-empty α -closed set in X.

Proof: Let F be a α - closed set such that $F \subset gcl(A) - A$. Then $F \subset X$ -A implies $A \subset X$ -F. Since A is α 'g closed and X-F is α -open, then $gcl(A) \subset X$ -F. That is $F \subset X$ -gcl(A). Hence $F \subset X$ -gcl(A).

 $gcl(A) \cap (X - gcl(A)) = \phi$. Thus $F = \phi$, whence gcl(A)-A does not contain nonempty α - closed set.

Remark 3.41: The converse of the above theorem need not be true, that means if gcl(A)-A contains no nonempty α -closed set, then A need not to be an α -g closed as seen in the following example.

Example 3.42:

Let $X = \{a, b, c,d\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}\}$. Let $A = \{b\}$. gcl $(A) - A = \{d\}$, it does not contain non-empty α - closed set in X. But $A = \{b\}$ is not an α ^og closed set.

Theorem 3.43: The finite union of two α ^og closed sets are α ^og closed.

Proof: Assume that A and B are α ^g closed sets in X. Let $A \cup B \subset U$ where U is α - open. Then $A \subset U$ and $B \subset U$. Since A and B are α ^g closed, $gcl(A) \subset U$ and $gcl(B) \subset U$. Then $gcl(A \cup B) = gcl(A) \cup gcl(B) \subset U$. Hence AUB is α ^g closed.

Remark 3.44: The intersection of two α ^g closed set in X need not be an α ^g closed set as seen in the following example.

Example 3.45:

Let $X = \{a, b, c\}$, $\tau = \{X, \phi, \{a\}\}$ then $\alpha^g = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}$. If $A = \{a, b\}$ and $B = \{a, c\}$. Then A and B are α^g closed sets. But $A \cap B = \{a\}$ is not an α^g closed set.

Theorem 3.46: If A is an α 'g closed subset of X such that $A \subset B \subset gcl(A)$, then B is an α 'g closed set.

Proof: Let $B \subset U$ where U is α open. Then $A \subset B$ implies $A \subset U$. Since A is α 'g closed, $gcl(A) \subset U$. By hypothesis $gcl(B) \subset gcl(gcl(A)) = gcl(A) \subset U$. Hence B is α 'g closed.

Remark 3.47: The converse of the above theorem need not be true as seen in the following example.

Example 3.48:

Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ Let $A = \{d\}$ and $B = \{a, d\}$. Then A and B are α ⁹g closed sets. But $A \subseteq B$ is not a subset of gcl(A).

4. Regular ^ Generalized Open Set:

Definition 4.1: A set $A \subset X$ is called alpha ^ generalized open (α ^g open) set if and only if its compliment is alpha ^generalized closed. The collection of all α ^g open sets is denoted by α ^GO(X).

5. α ^og Continuous and α ^og Irresolute Functions:

Definition 5.1: A function $f: (X,\tau) \to (Y,\sigma)$ is called α^g continuous if every $f^{-1}(V)$ is α^g closed in X for every closed set V of Y.

Definition 5.2: A function $f: (X,\tau) \to (Y,\sigma)$ is called α ^g irresolute if every $f^{-1}(V)$ is α ^g closed in X for every α ^g closed set V of Y.

Example 5.3: Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{a, b\}\}\$ and $Y = \{a, b, c\},$

 $\sigma = \{Y, \phi, \{a\}\}\$. Define $f : (X, \tau) \to (Y, \sigma)$ by f(a) = a, f(b) = b, f(c) = c. Here the inverse image of the closed sets in Y are α 'g closed sets in X. Hence f is α 'g continuous.

Example 5.4:Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, b\}, \{c\}, \{a, b, c\}\} \text{ and } Y = X, \sigma = \{Y, \phi, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}.$

Define $f:(X,\tau) \to (Y,\sigma)$ by f(a)=a, f(b)=b, f(c)=c, f(d)=d. The inverse image of every α 'g closed set in Y is α 'g closed set in X. Hence f is α 'g irresolute.

Remark 5.5: Every α ^g irresolute function is α ^g continuous but the converse is not true as seen in the following example.

Example 5.6: In example 5.3, f is α ^og continuous but not α ^og irresolute.

Remark 5.7: Every continuous function is α ^og continuous. But the converse is not true as seen in the following example.

Example 5.8:

Let $X = \{a, b, c, d\}$. $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$ and Y = X, $\sigma = \{Y, \phi, \{a\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ the identity mapping. Then f is α ^og continuous but not continuous.

Theorem 5.9: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ and $g: (Y, \sigma) \rightarrow (Z, \eta)$ be any two functions. Then

- (i) (gof) is α ^g-continuous if g is continuous and f is α ^g -continuous
- (ii) (gof) is α^g -irresolute, if g is α^g -irresolute and f is α^g -irresolute.
- (iii) (gof) is α^g continuous if g is α^g continuous and f is α^g -irresolute.

Proof:

- (i) Let V be any closed set in (Z,η) . Then $f^{-1}(V)$ is closed in (Y,σ) , since g is continuous. By hypothesis $f^{-1}(g^{-1}(V))$ is α^{n} closed in (X,τ) . Hence gof is α^{n} continuous.
- (ii) Let V be α ^g closed set in (Z,η) . Since g is α ^g irresolute, $g^{-1}(V)$ is α ^g closed in (Y,σ) . As f is α ^g irresolute, $f^{-1}(g^{-1}(V)) = (gof)^{-l}(V)$ is α ^g closed in (X,τ) . Hence gof is α ^g irresolute.
- (iii) Let V be closed in (Z,η) . Since g is α^{g} continuous. $g^{-1}(V)$ is α^{g} closed in (Y,σ) . As f is α^{g} irresolute, , $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V)$ is α^{g} closed in (X,τ) . Hence (gof) is α^{g} continuous.

REFERENCES

- [1]. D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1986), 24-32.
- [2]. S.P. Arya and T. M. Nour, Characterizations of s normal spaces, Indian J. pure app. Math, 21(1990).
- [3]. Benchelli.S.S. and Wali.R.S, On rw closed sets in topological spaces, Bull. Malayas. Math. Soc (2) 2007, 99-110.
- [4]. P. Bhattacharyya and B. K. Lahiri, semi-generalized closed sets in topology, Indian J. Math. 29(1987), 376-382.
- [5]. J. Dontchev, On generalizing semi-preopen sets, Mem. Fac Sci. Kochi. Univ. Ser. A. Math., 1 6(1995), 35-48.
- [6]. G. L. Garg and D. Sivaraj, On sc-compact and S closed spaces, Boll. Un. Mat. Ital., 6(3B) (1984), 321332.
- [7]. Gnanambal.Y, On generalized pre regular closed sets in topological spaces, Indian J. Pure

- App. Math, 28(1997), 351-360.
- [8]. N. Leivine, semiopen sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963), 36-41.
- [9]. N. Levine, Generalized closed sets in topology, Rend. Circ Mat. Palermo, 19(2)(1970), 89-96.
- [10]. H. Maki, J.Umehara and T. Noiri, Every topological space is pre-T1/2, Mem.Fac. Sci. Kochi univ. Ser. A. Math.,17(1996), 33-42.
- [11]. A.S. Mashhour, M.E.Abd. El Monsef and S.N. El-Deeb, On precontinuous mappings and weak pre-continuous mappings, Proc Math., Egypt, 53(1982), 47-53.
- [12]. C. Mugundan, Nagaveni.N, a weaker form of closed sets, 2011, 949-961.
- [13]. N.Nagaveni, Studies on Generalization of Homeomorphisms in Topological spaces, Ph.D Thesis, Bharathiaruniversity, Coimbatore.
- [14]. O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.
- [15]. N. Palaniappan & K.C. Rao, Regular generalized closed ets, Kyungpook Math. 3(2) (1993), 211.
- [16]. A. Pushpalatha, studies on generalization of mappings in topological spaces, Ph.D Thesis, Bharathiar university.
- [17]. Sanjay mishraw, Regular generalized weakly closed sets, 2012, [1939-1952].
- [18]. M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. 41(1937), 374-481.
- [19]. P. Sundaram and M. Sheik John, On w closed sets in topology, Acta Ciencia Indica, 4(2000), 389-392.
- [20]. M.K.R.S. Veera Kumar, Between closed sets and g closed sets, Mem.Fac.Sci Kochi Univ.(math),21(2000), 1-19.
- [21]Maki H, Devi R and Balachandran K Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. part-III 42(1993), pp 13 -21
- [22] Savithri.D&Janaki.C,On Regular^Generalized losed sets in Topological spaces,IJMA- 4(4)2013,162-169.
- [23] Veera kumar, M.K.R.S. (2002),g[^] -closed sets in topological spaces, Bull.Allah. Math. Soc, Vol.18, pp.99-112.
- [24]Abd El-Monsef, M.E., Rose Mary, S. and Lellis Thivagar, M. (2007), On g $^{\alpha}$ -closed sets in topological spaces, Assiut University Journal of Mathematics and computer science, Vol. 36, pp.43 51.
- [25]Murugalinam, M., Somasundaram, S. and Palaniammal, S. (2005), A generalized star sets, Bulletin of Pure and Applied Science, Vol.24 (2), pp.233 238.
- [26]Maragathavalli, S. and Sheikh John, M. (2005), On-closed sets in topological spaces, Acta Ciencia India, Vol.35 (3), pp.805-814.
- [27] Viswanathan, A., and Ramasamy, K., (2009), Studies on some new class of generalized closed sets and weakly closed sets in topological spaces, Ph.D. Thesis Bharathiar University, Coimbatore.
- [28] Veera kumar, M.K.R.S., (2000), Between semi-closed sets and semi-pre closed sets, Rend. Istit.Mat. Univ.Trieste, (ITALY)XXXXII, pp.25-41.
- [29] Ramya,N. and Parvathi,A.(2011), g[^] ψ -closed sets in topological spaces International Journal of Mathematical Archive- Vol.2(10), pp.1992 1996.

- [30]Veera kumar, M.K.R.S. (2005), Between ψ -closed sets and gsp-closed sets spaces, Antarctica. J.Math., Vol.2(1), pp.123-141.
- [31] Ramya,N. and Parvathi,A.(2011), g[^] ψ -closed sets in topological spaces International Journal of Mathematical Archive- Vol.2(10),pp.1992 1996.
- [32] Devi,R.,Selvakumar,A. and Parimala,M.αψ -closed sets in topological spaces.
- [33] Maki H, Devi R and Balachandran K , Associated topologies of generalized α -closed sets and α generalized closed sets, Mem.Fac.Sci.Kochi Univ.Ser.A, Math.,15(1994) pp 51 -63.,
- [34] A.S. Mashhour, I.A. Hasanein and S.N. EI-Deeb, α -continuous and α -open mapping., Acta Math. Hung., 41(3-4)(1983) 213-218.
- [35] Savithiri.D & Janaki.C,On Regular ^ Generalized Closed Sets In Topological Spaces International Journal of Mathematical Archive- 4(4), April – 2013 162 ISSN 2229 – 5046