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Abstract 

Enumeration of Relations and Functions between two finite sets has always been an interesting study in 

Combinatorics, a branch of mathematics which is seen as art of counting without actual counting. In this paper, we 

discuss the enumeration of various relations and functions. Interestingly enough, the answers turns out be part of 

interesting class of numbers.  
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1. Introduction 

The concept of relations and functions has been fundamental aspect in understanding almost all branches of higher 

mathematics like Group Theory, Vector Spaces, Topological Spaces and much more. The relations and functions that 

can be defined between two given sets which are usually called domain and co-domain are basic tools for 

mathematicians for exploring higher structures in mathematics. By considering finite domain and co-domain, we will 

try to enumerate the number of relations and functions that can possibly exist between such sets. This paper focus on 

such enumeration process. The results obtained were surprisingly related to various class of interesting numbers.  

2. Definitions 

2.1 A relation (or binary relation) R that can be defined between two non-empty sets A and B is the set of all ordered 

pairs that can exist between the elements of A and B.  

That is, ( ) , / , (2.1)R x y x A y B=    

2.2 A relation between two non-empty sets as defined in (2.1) is called an Equivalence Relation, if it is Reflexive, 

Symmetric and Transitive  (2.2)  

It is well known that any equivalence relation induces a partition of the given set. A partition of a set is splitting the 

whole set in to disjoint subsets whose union is the set itself.  

2.3 A function f between two sets A and B is a relation in which every element of A has a unique element as image 

under f in B. The sets A and B are called domain and co-domain of f respectively. The function between A and B is 

denoted by :f A B→ . Thus a relation is a function in which every element in the domain possess a unique image in 

the co-domain.  

2.4 Let :f A B→ be a function. The set of all images of f is defined as Range of the function f. The range of the 

function f is denoted by ( )f A . From the definition of a function, it is clear that ( )f A B . If ( )f A B= then we call f 

as onto or surjective function. Thus for an onto function, every element in the co-domain will possess at least one pre-

image in the domain of f. If f is not onto, then it is called into function.  

2.5 Let :f A B→ be a function. If the pre-images of every element in the range of f are also unique, then f is said to 

be one-one function or injective function.  

2.6 A function :f A B→
 
which is one-one and onto is called a bijection or one-one correspondence. In this case, 

we say that A and B are equivalent sets.  

We always consider the domain A and co-domain B to be finite sets for further discussion of this paper. In particular, 

we assume that A contains m elements and B contains n elements. That is, ,A m B n= = .  
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3.  In this section we prove two theorems regarding enumeration of relations.  

3.1 Theorem 1 

The total number of relations that can exist between A and B such that ,A m B n= = is 2mn
 (3.1) 

Proof: If no element in A has any image then we get what is called a null relation which possesses no ordered pair. If 

all the elements of A are mapped on to all the elements of B then we get a relation which represent the Cartesian 

product between A and B. Clearly, this must be the relation with maximum number of ordered pairs that can exist 

between the elements of A and B. We also note that the number of elements in the Cartesian product is

A B A B mn =  = .  

Thus any relation that can be defined between A and B would be a subset of the Cartesian product. Thus, the total 

number of relations that can exist between A and B would be the cardinality of the power set of the Cartesian product 

which contains mn  elements. Therefore, using the cardinality of the power set, the number of relations is clearly 2mn
. 

This completes the proof.  

3.2 Stirling’s Numbers of Second Kind 

Let S be a set with n elements. We define the Stirling’s numbers of second kind denoted by  

( , )S n k or 
n

k

 
 
 

as the number of partitions of S containing exactly k parts. That is the Stirling’s numbers of second 

kind represent the number of partitions of a set with n elements using k non-empty disjoint subsets.  

In this sense, it follows that 0 k n  . In particular, if n = 0, k = 0 we consider
0

(0,0) 1
0

S
 

= = 
 

. Similarly there is 

only one possible partition namely the whole set S itself if k = n. Thus, ( , ) 1
n

S n n
n

 
= = 
 

. Also, if k n  then there is 

no possibility of obtaining any partition of S with more than n non-empty subsets (since the minimum cardinality must 

be 1). Hence, ( , ) 0
n

S n k
k

 
= = 
 

 if k n .   

With the aid of this definition, we can construct a triangle portraying Stirling’s numbers of second kind as shown in 

Figure 1.   

 

Figure 1: Stirling Numbers of Second Kind Triangle 
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3.3 Bell Numbers  

The sum of each row numbers in Figure 1 containing Stirling numbers of second kind are called Bell’s Numbers. If we 

do so, then from Figure 1, we get 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, . . . We denote the nth Bell number 

by Bn. Thus 0 1 2 3 4 5 61, 1, 2, 15, 52, 203, 877,...B B B B B B B= = = = = = =  

The sequence of first twenty Bell numbers are given by 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678570, 

4213597, 27644437, 190899322, 1382958545, 10480142147, 82864869804, 682076806159, 5832742205057,  . . .     

To know more about Stirling’s numbers of second kind and Bell Numbers, see [1], [2]. The following theorem 

indicates the need of Bell numbers.  

3.4 Theorem 2 

The total number of equivalence relations that can be defined on a set with n elements is the nth Bell number Bn.   

Proof: By definition of Stirling numbers of second kind, we know that ( , )S n k represent the number of partitions of a 

set with n elements using k non-empty disjoint subsets where 0 k n  . Thus the total number of possible partitions 

that can be obtained for a set with n elements will be sum of all Stirling’s numbers of second kind for each value of k 

given by
0

( , ) (3.2)
n

k

S n k
=

 .      At the same time,
0

( , )
n

k

S n k
=

 also represents the sum of all numbers in row n of the 

Stirling numbers of second kind triangle of Figure 1.  But by definition of Bell numbers, this sum is precisely the nth 

Bell number by Bn. Hence, 
0 0

( , ) (3.3)
n n

n

k k

n
B S n k

k= =

 
= =  

 
  .  

We know that any equivalence relation defined on a set produces a partition of that set. Hence, the total number of 

equivalence relations defined on a set with n elements must be same as that of the number of partitions that can be 

obtained for that set. But the total number of partitions for a set with n elements from (3.3) is the nth Bell number by 

Bn. Thus, the total number of equivalence relations on a set with n elements is precisely Bn. This completes the proof.  

4. In this section, we discuss theorems concerning enumeration of various kinds of functions.  

4.1 Theorem 3 

If :f A B→ is a onto (surjective) function where ,A m B n= = then m n  (4.1)     

Proof: According to the definition of onto function in section 2.4, we see that f is onto if every element in the co-

domain B should have at least one pre-image in the domain A. Since ,A m B n= = , we must have m n .  

4.2 Theorem 4 

If :f A B→ is a one-one (injective) function where ,A m B n= = then m n  (4.2)   

Proof: If f is one-one, then by definition in section 2.5, the pre-image of every element in the range of f must have 

unique pre-image in the domain A. Thus, if the range of f is ( )f A then each of the p elements in the domain A will be 

mapped under f to some p elements in the range ( )f A . Hence, ( )f A m= . Since ( )f A B it follows that,

( )f A B giving m n . This completes the proof.  

4.3 Theorem 5 

If :f A B→  where ,A m B n= = is a bijection (one-one and onto) then m = n      (4.3) 
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Proof: From (4.1) of theorem 3, we know that if f is onto then m n . Similarly, from (4.2) of Theorem 4, we know 

that if f is one-one then m n . Hence, if f is both one-one and onto i.e. if f is a bijection then m n as well as m n . 

Thus m = n. This completes the proof.   

5. In this section, we provide methods for number of functions that can exist between two finite sets A and B such that

,A m B n= = .  

5.1 Theorem 6 

Let :f A B→ where ,A m B n= = . Then the number of functions between A and B is
mn    (5.1) 

Proof: If :f A B→ is a function, then each element in the domain of f should be mapped on to any one of the n 

elements in B. Thus each element of A has n choices of images in B. Hence by multiplication rule of counting, the total 

number of possible functions f that can exist between A and B would be ( ) mn n n n n mtimes n    = . This 

completes the proof.   

5.2 Theorem 7 

Let :f A B→ where ,A m B n= = . Then the number of one-one functions (injectives) between A and B is given by 

!
(5.2)

( )!

n

m

n
P

n m
=

−
 

Proof: We will list the elements of A as  1 2. ...., mA x x x= . Since f is one-one, by (4.2) of Theorem 4, we have m n . 

Hence ( )!n m−  is well defined. Since 1x A , there are n possible choices for 1( )f x B . Since f is one-one, for 

2x A there are n – 1 possible choices (since 2x cannot have same image as that of 1x ).such that 2( )f x B . Similarly, 

for 3x A there are n – 2 possible choices such that 3( )f x B . Proceeding in same fashion since m n , for px A

there are ( 1) 1n m n m− − = − + possible choices such that ( )pf x B . Hence by multiplication theorem of counting, 

the total number of one-one functions (injectives) that can exist between A and B is 

!
( 1) ( 2) ( 1)

( )!

n

m

n
n n n n m P

n m
 −  −      − + = =

−
. This completes the proof.  

5.3 Theorem 8 

Let :f A B→ where ,A m B n= = . Then the number of onto functions (surjectives) between A and B is given by  

1

0

( 1) ( ) ( 1) ( 2) ( 1) 1 (5.3)
1 2 1

n
r m m m m n m

r

n n n n
n r n n n

r n

−

=

       
− − = − − + − −  + −       

−       
  

Proof:  From (5.1) of Theorem 6, we know that there are totally 
mn functions that exist between A and B. To make 

sure that we need only onto functions between A and B, we want to exclude functions among 
mn which are not onto.     

First, we count the number of functions which maps only to n – 1 elements of B. Such functions will clearly be not 

onto as we have left one element from B. The number of functions which maps to only (n – 1) elements of B by (5.1) 

would be ( 1)mn− . There are 
1

n 
 
 

choices to leave 1 element from n elements in B. Hence the number of functions 

which are not onto but mapping on to any of (n – 1) elements of B, by multiplicative rule of counting would be 

( 1)
1

m
n

n
 

− 
 

. Similarly there are 
2

n 
 
 

choices of leaving 2 elements from n elements of B and number of functions 

which are not onto then (by (5.1)) would be ( 2)mn − . So, the number of functions which are not onto but mapping on 
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to any of (n – 2) elements of B, by multiplicative rule of counting would be ( 2)
2

m
n

n
 

− 
 

. Proceeding in similar 

fashion, we see that at the most we can leave at the most n – 1 elements of B in 
1

n

n

 
 

− 
ways and number of such 

functions which are not onto would be ( ( 1)) 1
1 1

m m
n n

n n
n n

   
− − =   

− −   
.  

Now the total number of onto functions that exist between A and B can be obtained by using Principle of Inclusion and 

Exclusion (PIE). Thus the total number of onto functions is given by   

1

0

( 1) ( 2) ( 1) 1 ( 1) ( )
1 2 1

n
m m m n m r m

r

n n n n
n n n n r

n r

−

=

       
− − + − −  + − = − −       

−       
  

This completes the proof.  

We end this paper with the following alternative formula for counting onto functions using Stirling’s numbers of 

second kind. These numbers are displayed in Figure 1. Here is an recursive formula to determine Stirling’s numbers of 

second kind ( , )S m n where m n .  

If 2m n  , we have ( 1, ) ( , 1) ( , ) (5.4)S m n S m n nS m n+ = − +  

We now present a theorem for counting number of onto functions using the Stirling’s numbers of second kind. This 

theorem is exactly the same as Theorem 8 but provided in different perspective.  

5.4 Theorem 9 

Let :f A B→ where ,A m B n= = . Then the number of onto functions (surjectives) between A and B is ! ( , )n S m n  

(5.5) where ( , )S m n are Stirling’s numbers of second kind.  

Proof: We first treat the elements of the domain A as labeled balls and elements of the co-domian B as labeled urns. 

Then, the number of onto functions between A and B can be viewed as the number of possible ways that m labeled 

balls can be distributed among n labeled urns such that no urn is non-empty.   

We note that distributing m labeled balls among n urns is the number of partitions of A containing m elements in to 

exactly n parts. We also note that for onto functions we should have (by (4.1) of theorem 3), m n . Hence the 

distribution of m labeled balls among n urns represents the Stirling’s number of second kind of the form ( , )S m n .  

Once the balls have been distributed, there are !n  ways to label the urns. Hence by multiplication rule of counting, the 

total number of onto functions that exist between A and B must be ! ( , )n S m n . This completes the proof.  

Finally, we note that 
1 2 3 1 2 3

!
! ( , ) (5.5)

! ! ! !n n

m m
n S m n

r r r r r r r r

 
= = 

     
  where 1 2 3 nr r r r n+ + ++ = , 

Hence, the number of onto functions by Theorem 9 would be 
1 2 3 n

m

r r r r

 
 

 
   

Thus, we see the number of onto functions can also be represented by sum of multinomial coefficients. As an 

illustration the number of onto functions that exist between A and B where 5, 3A B= = according to (5.5) would be 

either 3! (5,3)S or 
1 2 3

5

r r r

 
 
 

 where 1 2 3 5r r r+ + = .  
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Now using Table 1, we find that (5,3) 25S = . We can also use (5.4) to get this. Hence 3! (5,3) 6 25 150.S =  = Now 

we will get the same result using multinomial coefficient formula.  

1 2 3

5 5 5 5 5 5 5
(3 30) (3 20) 150

122 212 221 113 131 311r r r

             
= + + + + + =  +  =             
            

 .  

So among 
53 243= possible functions that exist between A and B, 150 functions would be onto.  

6. Conclusion 

The enumeration of number of relations, equivalence relations, functions, one-one functions, onto functions, bijections 

had been done through various theorems in this paper. Interestingly enough, we saw that the number of equivalence 

relations that can be defined on a set with n elements is the nth Bell number. The number of one-one functions depends 

on the number of ways of permuting m elements among n elements. Theorems 8 and 9 provide two equivalent ways of 

counting number of onto functions between A and B. We witnessed that the number of onto functions depends on 

Factorials and Stirling’s numbers of second kind as well as multinomial coefficients. Connection between completely 

unrelated concepts is the beauty of mathematics and this aspect is repeatedly reflected in this paper. Moreover, this 

paper provides the complete enumeration of relations and functions that can exist between two finite sets.  
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