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Abstract: 

A mathematical model for the propagation of 

infectious diseases has been discussed in this 

paper.  The model that has been examined is 

basically SIR model. The governing equations 

have been solved to the best possible solution.  

The influence of critical parameters over the 

system has been discussed with the graphical 

illustrations. It  is observed that as the 

transmission (β) increases the sensitive 

population and, with the duration increasing, the 

vulnerable population diminishes and stays 

constant and is time-independent. Further, it is 

observed that as the rate of infection increases the 

susceptible population tens to zero. In addition to 

the above as R rate of recovered individual 

increases the susceptible population (S) decreases. 

The phenomena  is an agreement with the real life 

situation. In addition to the above as R rate of 

recovered individual increases the susceptible 

population (S) decreases. The phenomena  is an 

agreement with the real life situation. 

 

 

I. INTRODUCTION 

An on-going hazard to humankind is 

infectious illnesses. A sickness can harm every 

human on the world. Infectious illnesses have 

developed and reoccurred into a major 

international concern. The development of 

preventive measures can assist an appropriate 

knowledge of the transmission processes of 

illnesses resulting from current and novel 

pathogins. Transmission prevention measures, 

including vaccinations and medicines, must be 

created at a rate equivalent to microorganisms. 

Another difficulty is to implement and properly 

utilize these advanced instruments for 

microorganisms. Different microorganisms or 

pathogenes produce an infectious illness. Usually 

the majority are micro-organisms. Various kinds 

of viruses and bacteria are the most prevalent 

pathogen. Pathogens are also known to be Fungi 

and Protozoa and are responsible for a number of 

conditions. These infections are called 'infectious' 

diseases, as these pathogens may readily be 

passed from an infected individual to someone 

else. Influenza or flu that is caused by certain 

viruses might be the common and recognized 

example of such disorders. The fact that millions 

have been infected by the diseases of HIV, 
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mumps and measles, rubella, little pox, malaria. 

Many of these illnesses continue to prevail at 

local or global level and are endangering public 

health. 

II. MODE OF TRANSMISSION: 

Infectious illnesses may spread in 

numerous ways and diseases via diverse 

mechanisms of transmission cause infections. 

Some infections may be caused by direct touch, 

while others through indirect encounters. It is also 

possible to transmit through carriers or vectors. 

Malaria, Filaria, Western Nile, Dengue and 

Chikungunya, for instance, spread via mosquitos. 

The illness in the air transmitted by sneezing, 

tobacco, and laughing from an infected person to 

an uninfected individual. An infected individual 

may dislodge the germs on the dust particles or 

any other media.  

III. Mathematical Model  (S I R ) 

An imagined microworld comprised of 

things who operate according to specific rules is 

a mathematical model. The language we use in 

mathematical matters is concisely and 

unambiguously to formulate these laws of 

behaviour, which compells and helps us to make 

our assumptions apparent. 

Foy and Cooney [5] They were the first 

to attempt, by mathematical models, to examine 

the longitudinal study of type A and B infection 

among the students of Seattle. Subsequently, 

Anderson and R.M. May  [6] extended the 

mathematical theory to studyPopulation Biology 

of Infectious Diseases. Thereafter, Hale and S.V. 

Lunel [7] introduced the concept of functional 

differential equations to study the concept of 

infected population dynamics.The mathematical 

model of Control of Communicable Diseases was 

intensively studied by Benenson [8] . Moreover, 

Daniel Bernoulli has also been credited with 

inventing early mathematical models since the 

18th century, when he developed a model for 

smallpox to assess the efficacy of a healthy 

population with smallpox. Quick diagnostic tests, 

available clinical data and electronic monitoring 

can enable mathematical models to be applied to 

scientific hypotheses and to develop practical 

methods [9]. 

A model can determine if the related 

illness spreads across the population or died by 

calculating transmission, reproductive number 

and other factors and characteristics. It may also 

assess the impact of a control measure and give 

guidance for public health in subsequent attempts 

to eliminate illness. Since the mid 20th century, 

however, mathematical models have grown, after 

the publication of the work on epidemic models 

by Kermack and McKendrick [4] in 1927 that 

contained threshold conclusions that determined 

whether or not an epidemic could develop [10]. In 

the previous two decades, the number of 

modelling practises in the biological sciences has 

increased enormously. by Cohen [11].  

The illness has been shown to be 

significantly related to the overwhelming family 

and people in unclean settings. The death rate is 

closely associated with the number of persons in 

a house in the particular population region. The 

connection between the housing and workplace 

congestion and death from TB is considered to be 

substantial. The illness transmission is usually 

connected with lengthy intimate contact with the 

sick individual, and this is mathematically 

determined. by   Guo and M. Li, [15]. 

The transmission method and the 

number of infected populations are described in 

an epidemic pattern. The number or fraction of 

the population remained uninfected can be 
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determined by such a model. Two common 

schematics for transmission of illness in Figure 

above. (a) infection with SIRS; The notion of 

population dividing is extensively employed in 

epidemic simulations. 

These divisions are generally 

represented in mathematical convenience by 

letters S, E, I and R representing the population 

susceptible, exposed, infected and recovered, 

respectively. Persons sensitive to infection are 

classified as susceptible and belong to the 

compartment of S (susceptible). E (exposed) 

compartment includes an individual who already 

is sick, but does not display any symptoms or who 

is unable to transmit others. After an infected 

person infects others, they become like an 

infectious person and are part of the compartment. 

Finally, if someone is cured of the virus, they 

belong to the R (recovered) body. Either a 

recovered person will be there if he/she is 

permanently recovered or may again be 

vulnerable and go back to S.The intricacies of this 

unobserved factor underpin this study.  

Population is supposed to be 

homogenously combined and people become 

infected or are constantly treated during these 

modelling sessions. Some schematics are 

displayed in the following Figure. The following 

system of normal differential equations might 

provide a rudimentary illustration of the SIR 

model.  

 

 

An important process used by modellers 

for testing the robustness of mathematical model 

predictions is the comparison of multiple 

models[1–3]. Kermack and McKendrik's Simple 

SIR model [4]. 

In this model the populations are split 

into vulnerable, infecting and recovering 

individuals and their corresponding population 

fractions are shown in the functions S(t), I(t) and 

R(t) (measured, for example, in days). The 

changes in these quantities are represented using 

the differential equations 

IS
dt

dS
−=

                                                                        

(1)
 

IIS
dt

dI
 −=                                                                              

(2) 

I
dt

dR
=

                                                                                               

(3)

 

 

Such that 

0  and (constant)k =R+I+S =++
dt

dR

dt

dI

dt

dS

 

Then      

 +−−= SIS
dt

dS

                    

           (4) 

Where β represents the average number of 

individuals that are infected and ϒ is rate of 

recovery.  
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This basic model illustrates how sub-

populations of sensitive, infectious and reclaimed 

classes develop, without taking into account the 

population demographics of the host population. 

The image above is altered, taking into account 

several elements that capture the major 

characteristics of the issues, however this change 

naturally increases the models complexity and 

makes analysis difficult and often impossible. 

A crucial conclusion for the model of an 

epidemic is generally based on the basic 

reproductive number, which is commonly 

referred to as R0, defined as the total number of 

secondary infections in a totally susceptible 

population of the infected person during the 

whole infectious period [17,18]. The basic 

reproductive number is a key driver of 

population-level disease infection patterns. If and 

only if that number is more than one, an epidemic 

breaks apart. This threshold characteristic gives 

vital information on the possible spread of the 

disease and its effects [18]. Recently, 

Srinivasarao veerla et al [19] obtained a simple 

mathematical model which explains the influence 

of several participating parameters on the new 

infections case. Such an example of SIS models 

would be bacterial infections. On the other hand, 

a SIR-like model would be suitable if the 

recovery were permanent and the recovered 

people were not vulnerable to this pathogen, as 

observed with viral infections. 

IV. SOLUTION METHODOLOGY  

“Since S+I+R=k (constant) then 

0=++
dt

dR

dt

dI

dt

dS
 

Subject to initial conditions 

( ) ( ) 00 0,0 SSII ==  where 

0,0 0  I  and  00 S Where the 

derivatives
dt

dR
and

dt

dI

dt

dS
, measure the rates 

of change of the quantities S(t),I(t), and R(t). The 

transmission parameter  is the average 

number of individuals that one infected 

individual will infect per time unit, assuming 

that all contacts that this individual makes are 

with susceptible individuals. Thus, a more highly 

infectious disease has a higher  . The number 

is the rate of recovery, so that 


1
 is the average 

time period during which an infected 

individual remains infectious .The product 

S(t)I(t) is the total infection rate, the fraction of 

the population that will be infected per unit 

time at time t. T o understand this, note that, if 

a fraction I(t) of the population is currently 

infected, then they would infect a fraction 

I(t) of the population per unit time if all of their 

contacts were with susceptible individuals, but as 

only a fraction S(t) of the population is currently 

susceptible, they will only infect  I(t)S(t) per 

unit time.” 

The ratio



is also known as the basic 

reproductive numberR0, Which is a major index 

for the measurement of infections transmission. 

R0 is defined as the average number of persons 

infected with an infected person in the whole 

susceptible population throughout the infection 

period. 

 

This simple model, which is the basis of 

numerous elaborations, offers some quite 

stunning forecasts. By inputting the differential 

equations mentioned above and selecting certain 

values for each numeric solution of differential 
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equations.  and   Together with the initial 

S(0), I(0) and R(0) values, a matching 

epidemic curve may be generated for the 

population which will be infected by each day 

of the epidemic, a forecast for the group of the 

population. In addition, we may make broad 

conclusions about the model's solutions with 

the analytical instruments. The answers have 

been obtained accordingly. 

Adding equations (2) and (4) we get 

 +−−=+ IS
dt

dI

dt

dS
 

 

( )
 ++−=

+
)( IS

dt

ISd

 

( )
 =++

+
)( IS

dt

ISd

(5) 

Which is a linear equation in S+I with respect 

to‘t’, then the general solution is 

( ) cdteeIS tt +=+ 
   

( ) tecIS −+=+ 1  

IecS t −+= −1
(6)

 

Where c is the integration constant. Now using 

equation (6) in (2), we get  

( ) IIecI
dt

dI t   −−+= −1
                

( ) 2IIec
dt

dI t   −−+= −

 

getweequationin
dt

dI

Idt

dy
thatso

I
y )7(

1
,

1
2

−
==

 

( )   =−++ − yec
dt

dy t

 (8) 

 

Which is a linear equation in ‘y’ with respect to 

’t’ then the general solution is  

              (9)
 

Wh
e
re’d’ is integration constant.   

Considering the expansion of 
t

e
−

 and 

neglecting square and higher terms we get 

t
t

e 


−=
−

1 .substituting back in (9), one 

gets 

( ) ( )
ddt

t
c

t

e

t
c

t

ey +

−−−

=

−−− 










 












 11

 

ddte
tc

ee
tc

ey

cc

+
+−

=
+− −





−



















 

ddte
tc

ee
tc

ey
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+
+−

=
+− −





−



















 

 










c

e

d

c

tc
etc

ey
−















+
+−

+−

=
+−

 

tc
ee

d

c
y

c





− +−

+
+−

=






  

tc
ede

c
y

c





 +−−

+
+−

=




 



  (10)
 

 Substituting 
I

y
1

=  and  kc =+−   in 

equation (10), we get 

tk
eed

kI

c

−
+= 


1

              

 

( ) ( )
ddt

t
e

c
t

e

t
e

c
t

ye +

−
−−

=

−
−−
















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k

tk
eekd

I

c

−
+

=




1

    
 

tk
eekd

k
I

c

−
+

=






(11) 

 Applying initial conditions  0)0( II =  

and 0)0( SS =  in equation (6) and in (11), we 

get 

 

 00 1 IcS −+=  

100 −+= ISc  

and ( )






10
00 −+

+

=
IS

ekd

k
I  

Consequently ( )





1

0

0

00 −+

−
=

IS

eIk

Ik
d

 

Substituting c, d values in equation (11), we get 

 

( )

( )
tk

IS

e
IS

eIk

Ik
k

k
tI

−
−+

−+

−
+

=




























100

100

0

0

)(

(12)

 

Which represents infective population at any 

time‘t’. 

From equations (6) and (12) with given initial 

conditions, we get susceptible population in terms 

of‘t’ as  

 

(12)

     

 

Consequ

e

ntly, from equations (12) and (13) we 

get recovered population expressed in terms of t’ 

as  

( ) )()( tStIktR −−= implies that 

( ) ( )( )tISktR −−+−−= 111 00

 (14) 

Solving the differential equations 

IS
dt

dS
−=

 and   
I

dt

dR
=

, we have 

I

IS

dt

dR
dt

dS



−
=

 

                                                       



 S

dR

dS −
=

                   
(15) 

By using variable separable method from 

(15),we have 

( ) ( )cRS loglog +
−

=



 

=








c

S
log R



−
                                                               



 R

ceS

−

=
       (16)

 

When R=0, S=1, from equation (16), we get c=1 

( )( )

( )

( )
tk

IS

e
IS

eIk

Ik
k

k

tIStS

−
−+

−+

−
+

−−−++=
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





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



















100
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0

0

11001)(
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Therefore     

 R

eS

−

=       
(17)

 

V. CONCLUSIONS: 

The epidemic curve corresponding to a model 

under investigation may always be created by 

selecting acceptable values for β and ϒ , together 

with beginning conditions S(0), I(0) and R0.  

The analytical techniques enable us to identify 

some unified, generalized models and research 

solutions which are essentially characterized as 

follows: 

The epidemic thresh hold: Where inequality s(0), 

R0,>1, there is a declining tendency of the no of 

infected people which will indicate that after 

some time the epidemic will die. 

If s(0)* R0>1, The first no of the infected 

individual stays in the system will occur as an 

epidemic regardless of the amount. 

The epidemic's magnitude will not depend on the 

first patients infected but rather depend on the 

first sensitive cases, such as s0 and R0. An 

implicit notion which happens on the last size of 

the epidemic is always narrowly smaller for the 

susceptible S0 than the starting population. 

The conclusions in so far can be applied to the 

real life situation where in some critical 

implications occurs. more importantly , The 

epidemic threshold indicates that if we immunise, 

the population portion that spreads the illness 

might be controlled in some degree prior to the 

emergence of the sickness. This conclusion 

emphasises the idea of her immunity, which may 

be regulated more widely through avoidance of 

illness transmission. The other ways to achieve 

S(0)< ϒ * I*β which eliminates an epidemic 

through fractional quantities. 

This model does not enable the fact that the 

individual cannot differ from individuals in the 

direction of transmission from illnesses. This 

model does not allow the individual to differ. 

All predictions and conclusions made out of this 

model proves to be worthy of the contexts and a 

slight change in any of the parameters might alter 

the stability of the solution.this means that the 

predictions could prove to be unrealistic .in all 

such cases the problem needs to be reexamine 

with all moderate considerations in the model 

proposed. 

Figure 1 depicts the influence of .ϒ for different 

values of time over the recovery population. It is 

seen that as ϒ increases the recovery population 

decreases.Further the relation is forecast to be 

linear.In addition to the above as time increasing 

for constant values of ϒ,the population recovery 

decreases,subsequently 

Figure 2 shows that the influence of β for different 

values of time over the infected population. 

In figure 2 it is observed that for constant  β as 

time increases,the infected population increases 

and thereafter remains a constant. 

Figure 3 shows that as β rises the sensitive 

population, and as the period increases, the 

vulnerable population declines and remains 

constant and time-independent. 

. 
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Fig 1:  Influence of time on recovery population 

® 

 

Fig 2: Effect of time over infected population 

 

 

Fig 3: Influence of time over susceptible 

population 

 

Fig 4: Rate of infection over infective population 

 

Figure 5 depicts the relation between the rate of 

infection β and susceptible population (S) for 
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different recovered individuals when the recovery 

rates ϒ held constant. It is observed that as the 

rate of infection increases the susceptible 

population tens to zero. In addition to the above 

as R rate of recovered individual increases the 

susceptible population (S) decreases. The 

occurrences are in accordance with the situation 

in actual life. 

 

 

Fig 5: Influence of rate of infection Vs 

Susceptible population 

Figure (5) illustrates the phenomena for the rate 

of recovery (ϒ) verses susceptible population S, 

from the illustration it is observed that as the rate 

of recovery increases the susceptible population 

also increases. However such an increase is not 

much significant as was seeing in the initial stages 

of the situation. further as R increases the 

susceptible population decreases at any point of 

instant for the rate of recovery. 

 

Fig 6: Influence of rate of recovery w.r.t 

susceptible population 

Figure (6) demonstrates the impact of the 

recovery rate (ϒ) on the susceptible population 

(S).While all other parameters remaining constant. 

It is observed that, as (ϒ) increases the susceptible 

population in the system increases. In addition to 

the above it is noticed that as R increases the 

susceptible population (S) decreases. Such 

decrease is a parabolic in the initial stages and is 
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found to be linear thereafter.

 

Figure 7:- Variation of susceptible 

population with respect to  the recovery 

population 
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