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Abstract- Exploring the human brain from the viewpoint of 

connectivity patterns reveals important information regarding the 

structural, functional, and causal organization of the brain. 

Among the connectivity techniques, functional, and effective 

connectivity have been the focus of the computational studies in 

recent years. The main purpose of this paper is to review the 

recent  studies utilizing Labeling graph  methods to analyze 

connectivity patterns in the human brain network using fMRI 

data and  expect to see whether the recognition of brain 

connectivity properties by Labeling graph  theory (as measured 

by fMRI) has been effective in understanding the mechanisms 

underlying human cognition compared to the traditional 

approaches. 

 

Index Terms- brain connectivity, functional connectivity, 

effective connectivity, fMRI, labeling graphs. 

 

I. INTRODUCTION 

 he human brain is one of the most complex networks in the 

world, and studies on its static  and  dynamic  properties 

have undergone explosive growth in recent years [5], [6], [7], 

[20], [26]-[31]. The advances in graph theory and network 

neuroscience (i.e., the study of the structure or function of the 

nervous system) offer an opportunity to understand the details of 

this complex phenomenon and its modeling [32], [33]. Graph 

theoretical approaches have set up a mathematical framework to 

model the pairwise communications between elements of a 

network.  In  human  neuroscience,  graph theory is generally 

applied to either functional or  effective connectivity. However, 

most studies have been devoted to functional connectivity [5].  

Graph-based network analysis reveals meaningful information 

about  the  topological  architecture  of  human brain networks, 

such as small-worldness, modular organization, and highly 

connected or centralized hubs [5], [6], [7], [18], [32]. Small- 

worldness is a property of some networks in which most nodes 

are not neighbors of each other but can be reached from every 

other node by a small number of steps. This characteristic is well 

suited to the study of complex brain dynamics, and it confirms 

efficient information segregation and integration in the human 

brain networks with low energy and wiring costs. Recent studies 

demonstrate that the small-world property of brain networks 

experiences topological alterations under different cognitive 

loads and during development [1]-[3], as well as in neurological 

and mental disorders [21]-[26]. These alterations may provide 

novel insights into the biological mechanisms underlying human 

cognition, as well as health and disease. 

Recent advances in neuroimaging have enabled mapping of the 

human connectome  in  different  applications  [32], [33]. Brain 

function can be  localized through neuroimaging techniques that 

assess changes in metabolism via positron emission tomography 

(PET) or changes in blood oxygenation level-dependent (BOLD) 

responses via fMRI. Structural pathways can be captured using 

diffusion tensor imaging (DTI), in which MRI is applied to trace 

white matter tracts. Finally, the timing of brain activity  and  its  

locus can be determined from electroencephalogram (EEG) or 

magnetoencephalogram, which respectively, measure electrical 

and magnetic signals outside the skull. Used separately or 

together, these techniques constitute the neuroimaging toolkit of 

scientists investigating the physiology of human brain networks.  

fMRI and PET offer a relatively low temporal resolution but 

have a significant spatial resolution, making them particularly 

useful for determining where neural signals are generated. 

However, PET scanning can measure the blood flow changes in 

an area of ∼5–10 cubic millimeters while fMRI can resolve 

down to 3 cubic millimeters and even lower. Moreover, PET 

scanning is much more expensive than fMRI and requires 

radioactive isotopes to work [12]. During the last two decades, 

there has been an explosion of fMRI studies mapping neural 

functions to distinct parts of the brain at rest or during task 

performance, however, more attention has been directed toward 

resting-state fMRI (rs-fMRI) data.The main purpose of this paper 

is to review the recent  studies utilizing Labeling graph  methods 

to analyze connectivity patterns in the human brain network 

using fMRI data and  expect to see whether the recognition of 

brain connectivity properties by Labeling graph  theory (as 

measured by fMRI) has been effective in understanding the 

mechanisms 

underlying human cognition compared to the traditional 

approaches. 

 

II. THEORETICAL BACKGROUND: CONNECTIVITY 

PATTERNS USING FMRI 

Brain connectivity investigations using fMRI time-series were 

initiated in the mid-1990s and provided a new tool for 

researchers, especially neuroscientists, to study the human brain 

network with high precision. Computational methods available 

for brain connectivity are divided into two general categories: 
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functional connectivity and effective connectivity [12], [13]. 

Briefly, functional connectivity provides information about the 

statistical dependencies or temporal correlations between 

spatially remote neurophysiological events, whereas 

Now it is the time to articulate the research work with ideas 

gathered in above steps by adopting any of below suitable 

approaches: effective connectivity is concerned with the directed 

influence of brain regions on each other [13]. In the following, 

we will review the computational methods  that are  presented in 

the literature for investigating both types of  connectivity with a 

greater focus on graph theoretical approaches in separate sections 

(Figure 1). 

 

 

                                             Figure 1 

Functional Connectivity 

Functional connectivity refers to the temporal correlations 

between BOLD signals from spatially remote brain regions [11]. 

Functional connectivity methods in fMRI studies are broadly 

divided  into  model-  based (e.g., cross-correlation, coherence 

analysis, and statistical parametric mapping) and model-free 

(e.g., decomposition-based analysis, clustering, and mutual 

information) groups. 

Model-Based Methods 

Model-based methods typically identify brain connectivity 

networks by selecting one or more “seed” regions and then 

determining whether there is a linear link between seed regions 

and other regions using predefined criteria [23], [24]. Despite 

their widespread use and simple interpretation in identifying 

functional connectivity, the requirement for prior knowledge 

(particularly in rs-fMRI), dependency on the seed selection, and 

the inability to detect non-linear forms of interaction, restrict the 

discovery of all plausible functional architectures [10]. 

 

 

 

 

Cross-correlation and coherence  

Cross-correlation analysis is the most traditional method for 

testing functional connectivity, which is defined by measuring 

the correlation between the BOLD signals of any two brain 

regions. The computational complexity of this method is 

extremely high when calculating the correlation of two series at 

all lags. Fortunately, a large number of fMRI studies have 

overcome this drawback by computing only the correlation with 

zero lag due to the short duration of the hemodynamic response 

of blood [12]. Moreover, correlations are sensitive to the shape of 

the hemodynamic response function (HRF), which causes 

variations across different individuals and different brain areas. 

Furthermore, a high correlation may be observed among regions 

that practically have no blood flow fluctuations. Uncontrolled 

physiological noise in the brain (e.g., from cardiac and 

respiratory variations) can also result in high correlations 

between brain regions [11], [12] suggested a new measure, 

termed coherence, which is the spectral representation of 

correlation in the frequency domain. 

Statistical parametric mapping (SPM) 

SPM is another model-based approach used to detect region- 

specific effects (e.g., brain activation patterns) in neuroimaging 

data, such as fMRI and PET, using a combination of the general 

linear model (GLM) and Gaussian random field (GRF) [13]. The 

GLM helps estimate the parameters describing the spatially 

continuous data by performing a univariate test statistic on each 

voxel. GRF theory is applied to address the multiple comparisons 

problem for continuous data (i.e., images) when making 

statistical inferences over a volume of the brain, an approach 

similar to the Bonferroni correction for the analysis of discrete 

data. 

Model-Free Methods 

In contrast to seeds-based methods, model-free methods need  no 

seeds selection. Also, model-free methods may be beneficial in 

studies where  there  are  no  temporal  or  spatial  patterns,  as 

well as in quantifying non-linear neuronal interactions [10]. 

Decomposition-based analysis 

PCA can express the  fMRI  data  with  a  linear  combination  of 

orthogonal contributors that have  the  greatest  impact  on the 

data variance. Each contributor contains a pattern of time 

variability (or a principal component) multiplied by a pattern   of 

spatial variability (or an eigen map). The created eigen maps 

reflect the connectivity architecture of the brain. Despite the 

ability to explore the whole-brain connectivity, PCA fails to 

detect activations when the contrast-to-noise ratio is low. Also, 

how to select the optimal number of components has become an 

open question. Thus, PCA commonly serves as a preprocessing 

step in fMRI studies through dimension reduction [21]. Another 

decomposition-based method, called independent component 

analysis (ICA), attracted the attention of researchers in rs-fMRI 

studies. The major difference between 

ICA and PCA is that the components in  ICA should be as 

independent as possible. Note that a violation of component 

independence would reduce the efficiency of ICA. Furthermore, 

finding the optimal number of independent components is 

controversial because choosing a small number of components 

can have a significant effect on  ICA  results, particularly when 

used for decoding purposes. Finally, ICA cannot discriminate 

between signals of interest and signals of no interest (e.g., 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

FIGURE 1 | Taxonomy of existing methods for modeling functional and effective 

connectivity patterns using fMRI. Each of the identified methods can be 

represented in terms of a graph, where the nodes correspond to cortical or 

subcortical regions and the edges represent (directed or undirected) 

connections (Bullmore and Sporns, 2012); thereby all of them can be further 

examined with graph-theoretic measures. 
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physiological noise, unexplained signal variations), leading to 

overfitting and invalid assessment of statistical significance. To 

address this pitfall, proposed a probabilistic ICA that allows for 

non-square mixing when there is Gaussian noise.  

 

 

Clustering 

The primary goal of clustering algorithms is to group voxels    or 

regions of interest into different clusters based on the similarity 

between their BOLD time courses. Hierarchical clustering, k-

means, fuzzy clustering (fuzzy c-means), self-organizing maps, 

graph-based, and bootstrap analysis are the most well-known 

algorithms used in fMRI studies [21], [22]. Among these 

methods, the largest volume of studies utilizes hierarchical and 

fuzzy clustering. Hierarchical clustering seeks to construct a 

hierarchy of clusters based on an agglomerative or divisive 

strategy. Although this method exhibits good efficacy in the 

presence of respiratory or cardiac noise, its high computational 

complexity is a serious limitation when examining the whole 

brain connectivity. Fuzzy c-means (FCM) is a method in which 

each data point has a membership value to each cluster, rather 

than entirely belonging to one cluster as k-means. This algorithm 

performs optimization by updating memberships and cluster 

centers until convergence [22]. It’s worth noting that, given the 

non-Euclidean nature of MRI data, the use of Euclidean distance 

in FCM- based algorithms may lead to an invalid result [10], [32] 

compared the results of clustering algorithms to those of 

decomposition- based methods and reported a high level of 

overlap. Future studies may, therefore, pay more attention to 

these algorithms and, by eliminating the above issues, achieve 

more acceptable performance in human neuroscience. 

 

III. WHAT IS A BRAIN GRAPH? 

A brain graph is a model of a nervous system as a number of 

nodes interconnected by a set of edges. For example, the edges 

can repre- sent functional or structural connections be- tween 

cortical and subcortical regional nodes based on analysis of 

human neuroimaging data. Once a brain graph has been 

constructed by defining the nodes and edges, its topological 

properties can be measured by a rich array of metrics that has 

been developed recently in the field of statistical physics of 

complex networks [14] and historically built on  the  concepts  of  

graph  theory  [15], [16]. Since the nodes of a brain graph can be 

spatially localized, or physically embedded, its geometrical 

properties can also be estimated and potentially related to 

network topology. 

 

          
 

                                        Figure 2 

The first application of graph theory and network analysis can be 

traced back to 1736 when Leonhard Euler solved the Königsberg 

Bridge Problem [14]. In this regard, a graph consists of a finite 

set of vertices (or nodes) that are connected by links called edges 

(or arcs). Euler studied the problem of Koinsberg bridge and 

constructed a structure to solve the problem called Eulerian 

graph.  

 

 
 

                                         Figure 3 

 

One of the most interesting problems in the area of Graph Theory 

is that of labeling of graphs. Graph labeling was first introduced 

in the last 1960s. A graph labeling is an assignment of the 

vertices or edges or both, subject to subject to certain conditions 

have been motivated by practical problems. Many practical 

problems in real life situations have been motivated the study of 

labeling of a graph.  Labeled graphs are becoming an 

increasingly useful family of Mathematical Models for a broad 

range of applications.  

Graph labeling ideas are highly utilized by structural models that 

gained popularity in the 19th and 20th century. For each kind of 

application, depending on problem scenario a kind of graph is 

used for representing the problem. A suitable labeling is applied 

on that graph in order to solve the problem. This structural 

arrangements of various objects or technologies lead to new 

inventions and modifications in the existing environment for 

enhancement in highly interdisciplinary, having important 

applications mainly it allowed to describe phenomena from very 

different fields: network structure, dynamics of network 

structure, dynamical processes running over networks, modeling 

of network topologies. The main purpose of this paper is how 

brain properties can emerge through the interactions of distinct 

neuronal units in various cognitive and neurological applications 

using graph labeling methods and to analyze connectivity 

patterns in the human brain network. 

     Harary [15]-[17] introduced the concepts of sum and integral 

sum graphs. A graph G is a sum graph if the vertices of G can be 

labeled with distinct positive integers so that e = uv is an edge of 

G if and only if the sum of the labels on vertices u and v is also a 

label in G. He extended the concept to allow any integers and 

called them as integral sum graphs. To distinguish between the 

two types, we call sum graphs that use only positive integers N-

sum graphs and those with any integers Z-sum graphs  [17]. 
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If G is a properly labeled sum graph, then the vertex with the 

highest label in a sum graph cannot be adjacent to any other 

vertex. Thus every sum graph must contain isolated vertex or 

vertices. If G is a sum graph or an integral sum graph with 

respect to a label set S, then G can be denoted as G+(S). 

Harary introduced a family of integral sum graphs that are 

defined by        Gn,n = G+(s) where S={-n,….. -2,-1,0 ,1,2,…. n} 

we find the number of edges of Gn,n.. We generalize the graph 

Gn,n ,n N and define the graph Gm,n = G+(s) where S={-m,….. 

-2,-1,0 ,1,2,….n} and prove that these graphs are integral sum 

graphs and also find their sizes.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        Figure 4 

 

While discussing sum and integral sum graphs we could notice 

that the compliment of a sum and integral sum graph G satisfies 

the property that e=uv is an edge of Gc    if and only if the sum of 

the labels on vertices u and v is not vertex label. From this idea, 

we define anti-sum and anti integral sum graphs and give some 

properties. The concept of integral sum and anti-integral sum 

labeling helps to decompose complete graphs. 

We define anti-sum and anti-integral sum graphs. The concepts 

of sum, anti-sum, integral sum and anti-integral sum labeling are 

used to decompose complete graphs. 

 

 

 
 

                                       Figure 5 

 Comparing the brain topological alterations during a cognitive 

task and resting-state using fMRI data helps identify areas that 

affect human behavioral performance. used graph labeling 

methods and to analyze connectivity patterns approach to explore 

variations in functional brain organization during semantic 

decision making compared with rest in healthy participants. They 

observed that differences were generally associated with the 

language-related and DMN regions. More importantly, they 

found greater intra-modular communication in these regions 

during decision making (i.e., a decrease in distributed 

connectivity), whereas the inter-modular communication was 

stronger at rest. 

Moreover,it analyzed whether cognitive behavior correlates with 

the functional connectivity of the DMN in healthy subjects, both 

while at rest and during an attentional task. Quantifying the static 

and dynamic nodal properties within the DMN, they revealed the 

importance of the default network, especially the posterior 

cingulate areas, on human cognitive performance. Finally, it 

investigated the relationship between ongoing alterations in 

baseline connectivity patterns and behavioral performance 

through a continuous auditory detection task. Interestingly, their 

results indicated a reduction in modularity (i.e., increasing 

integration efficiency) before misses compared with hits and 

task-free rest, mostly in the DMN areas and visual networks. 

These findings augment our understanding about the key role of 

the DMN in behavioral performance at rest and during a task; 

however, its association with other brain regions in more 

complex cognitive tasks, such as reasoning and executive 

functions, requires further studies. 

Disconnection in a brain made up of localized but linked 

specialized regions results in functional impairment, associating 

with atypical integration of distributed brain areas. Elaborated 

the rises and fall of disconnection syndromes and pointed out that 

many neurological disorders  can be explained via these 

syndromes, in line with the studies of pioneers in neurology and 

psychiatry such as Meynert, Wernicke, and Dejerine. Studies in 

the field of complex brain networks have demonstrated that 

analyzing the network properties and metrics derived from brain 

topology using rs-fMRI can help neurologists distinguish patient 

groups  from  control  subjects in mental disorders. In the 

following, several studies that have used graph theory to 

investigate common neurological disorders, comprising epilepsy, 

Alzheimer’s disease (AD), multiple sclerosis (MS), autism 

spectrum  disorder (ASD), and attention-deficit/hyperactivity 

disorder (ADHD), are discussed. However, other mental 

disorders were  also  found in recent graph-based literature, 

including schizophrenia, Parkinson’s disease, insomnia, major 

depression, obsessive compulsive disorder (OCD), borderline 

personality disorder (BPD), and bipolar disorder, but their 

contribution is negligible and more attention is required in future 

research using labeling graph connectivity patterns. 
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IV. CHALLENGES AND FUTURE DIRECTIONS 

In general, the consistency of results across similar 

experiments that employed a  Labeling graph  methods to 

analyze connectivity patterns approach  indicates  that  this 

perspective is promising for establishing a comprehensive and 

sustainable model in future fMRI studies. However, it is 

sometimes difficult to integrate all of the reported findings an 

of pathological brain networks because the results do not 

coincide with each other when the factors affecting the 

experiments are different. For instance, patient demographic 

factors (such as age, gender, educational level, etc.), disease-

specific characteristics (such as duration, course, severity, 

disability level, etc.), sample size, and network construction 

greatly vary across the studies. As an example of network 

construction, ignoring the negative entries in the connectivity 

matrix is very likely to result in the loss of valuable 

information. To overcome these heterogeneities and increase 

the reliability of the findings, more consistent comparisons can 

be made across the studies. In addition, there are several image 

repositories for pairwise studies in the area of brain network 

connectivity that can be explored by various packages based 

on Labeling graph  methods to analyze connectivity 

patterns.Although the importance of computational approaches 

in fMRI  analysis  has  been  evident  over  the  last  decade,  it  

has not always matched  the  richness  of  fMRI  data .Early 

methods mostly neglected the ability of predictive models to 

better understand the distributed and dynamic nature of neural 

representations. Recently, several theory-driven techniques 

have commenced to highlight the salient role of machine 

learning, algorithmic optimization, and parallel computing in 

fMRI analysis. Hence, adoption of modern techniques, such as 

multivoxel pattern analysis (MVPA), convolutional neural 

network (CNN), generative models, and real-time analysis, 

then aligning them with graph theoretical concepts might open 

a new generation of experiments that could transform our 

understanding of complex properties in the human brain 

networks. 

Another challenge in Labeling graph  methods to analyze 

connectivity patterns research is developing      a consensus 

about which of the brain parcellation schemes is optimal for 

defining network nodes and constructing the brain network. 

Different parcellation methods may lead to different 

topological properties in the human brain networks, and the 

results depend on the network resolution. However, for better 

insight, one can appraise the reproducibility of the primary 

findings by applying multiple parcellation schemes at different 

spatial scales, particularly those with high resolution. 

Moreover, node specification in developmental research is 

extremely important as it is possible for nodes to be dissimilar 

across a sample, which may distort the brain network. 

Therefore, a fundamental condition for ensuring the reliability 

of graph analysis in brain connectivity studies is the precise 

definition of network nodes, which itself requires the adoption 

of an appropriate parcellation strategy. 

Although structural pathways are thought to underlie 

functional connectivity patterns, one  cannot claim that 

there is a one-to-one correspondence between topological 

properties in functional and structural organizations. In 

some neurological diseases such as schizophrenia, small-

world network abnormalities may even display opposite 

directions over functional and structural organizations. 

Concerning this matter, van den Heuvel et al. recognized 

evidence of reduced local efficiency and segregation (i.e., 

clustering and modularity) together with increased global 

efficiency in several functional studies of schizophrenia. 

However, their review of structural studies resulted in 

contradictory findings, such as increased segregation along 

with reduced integration and global efficiency. Moreover, it 

examined the structural and functional  disruptions  in the 

earliest stage of MS and MS patients by combined use of 

DTI and rs-fMRI. Studies exhibited structural changes in 

the earliest stage of MS, while functional patterns remained 

stable at that stage. Hence, structure-function relationship 

studies are needed to help elucidate such existing deviations 

for labeling graph connectivity patterns. 

The dynamics of brain function seem to result in numerous 

cognitive, emotional, and behavioral changes that occur 

during brain development. However, the majority of studies 

cannot interpret brain network dynamics because their 

design is typically cross-sectional and the calculated 

measures of the brain graph are only capable of displaying a 

snapshot of the disease over time. Therefore, the 

progression of neurodegenerative disorders may not be 

well-understood, and subsequently, treatment strategies 

exhibit poor performance, reported that longitudinal fMRI 

studies with labeling graph connectivity patterns provide a 

suitable means for understanding the development of 

pathological conditions, as well as tracking temporal 

correlations between topological alterations in the brain 

network. 
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V. CONCLUSION 

The  main  focus of the current paper, comprehensive 

information on Labeling graph  methods to analyze connectivity 

patterns in the complex brain network along  with  its  

applications  in  neuroscience  is presented. The  brain  network  

topology  is  expected  to  be responsive to cognitive 

performance, behavioral variability, experimental task, and 

neurological disorders such as epilepsy, Alzheimer’s disease, 

multiple sclerosis, autism, and attention- deficit/hyperactivity 

disorder. However, Labeling graph  methods analysis in human 

neuroscience  faces  a  number  of  issues  that remain 

unaddressed, restricting its interpretation and application.  Some  

examples  are heterogeneity of the results, sensitivity to 

parcellation strategy and node specification, statistical variability 

of brain graphs due to noise, lack of attention to the structure-

function relationship, neglecting the variations in network 

density and connection strength, and dynamics of the brain 

network. Addressing any of these limitations in future studies 

will help advance our understanding of functional neural 

networks in the human brain. 
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