INTERIOR DOMINATING SETS AND INTERIOR DOMINATION POLYNOMIALS OF CENTIPEDES

Dr. K. Lal Gipson, R. Ajitha

Assistant Professor, Department of Mathematics, SCOTT Christian College (Autonomous), Kanyakumari District, Tamil Nadu, India. Research Scholar, Reg .No – 18213112092028, Department of Mathematics, SCOTT Christian College (Autonomous), Kanyakumari District, Tamil Nadu, India.

Affiliated to Manonmaniyam Sundaranar University, Abishekapatti, Tirunelveli – 627012,

Tamil Nadu, India.

Abstract: Let G = (V, E) be a undirected graph, without loop and multiple edges. Let P_n^* be the centipede with 2n vertices. P_n^* is $P_n \circ K_1$. We denote the graph granted from P_n^* by deleting the vertex labeled 2n as $P_n^* - \{2n\}$. Let $D_{Id}(P_n^*, j)$ and $D_{Id}(P_n^* - \{2n\}, j)$ be the family of interior dominating sets of G with cardinality *j*. Let $d_{Id}(P_n^*, j) = |D_{Id}(P_n^*, j)|$ and $d_{Id}(P_n^* - \{2n\}, j) = |D_{Id}(P_n^*, j)|$ and $d_{Id}(P_n^*, -\{2n\}, j) = |D_{Id}(P_n^*, -\{2n\}, j)|$. In this paper, we grant a recursive formula for $d_{Id}(P_n^*, j)$ and $d_{Id}(P_n^*, j)$. Using this recursive formula, we create the polynomial $D_{Id}(P_n^*, x) = d_{Id}(P_n^*, j)x^j$ where j = n and also we create a polynomial $D_{Id}(P_n^* - \{2n\}, x) = d_{Id}(P_n^* - \{2n\}, j)x^j$ where j = n - 1 which we investigate interior domination polynomial of P_n^* , $P_n^* - \{2n\}$ and grant some properties of this polynomial.

MSC: 05C69

Keywords: Centipedes, interior dominating sets, interior domination polynomial.

1. INTRODUCTION

loop Let G = (V, E)be undirected graph, without and multiple edges. а A non empty set $D \subseteq V$ is a dominating set of G, if every vertex V - D is adjacent to minimum one vertex in D. The cardinality of minimum dominating set is named as the domination number and is denoted by $\gamma(G)$ [4]. A vertex v is an interior vertex of G if for every vertex u distinct from v, there exists a vertex w such that v lies between u and w. A set $D \subseteq V(G)$ is an interior dominating set if D is a dominating set of G and every vertex v interior vertex of G. Any pendent vertices will not be a member in interior set of a graph. $\gamma_{Id}(G)$ denoted as the cardinality of minimum interior dominating set. Let P_n^* be the centipede with 2n vertices get by adjoining a single pendent edge to each vertex of a path P_n . Write that P_n^* is $P_n \circ K_1$. We denote the graph granted from P_n^* by deleting the vertex labeled 2n as $P_n^* - \{2n\}$ [3]. In this paper we investigate interior domination polynomial of P_n^* , $P_n^* - \{2n\}$ and grant some properties of this polynomial.

Figure 1. Centipede P_n^*

2. Interior Dominating Sets Of $P_n^* - \{2n\}$

Lemma: 2.1 Let $P_n^* - \{2n\}$ be the centipede with 2n - 1 vertices for every $n \ge 2$. (a) $\gamma_{Id}(P_n^* - \{2n\}) = n - 1$

(b) $D_{Id}(P_n^* - \{2n\}, j)$ is empty iff j > n - 1 or j < n - 1(c) $D_{Id}(P_n^* - \{2n\}, j)$ is non empty iff j = n - 1

Lemma (2.2) and (2.3) follows from the lemma 2.1 (b) and (c) **Lemma 2.2** If $D_{Id}(P_n^* - \{2n\}, j-1) = \varphi$ and $D_{Id}(P_{n-1}^* - \{2n-2\}, j-1) \neq \varphi$ then $D_{Id}(P_n^* - \{2n\}, j) \neq \varphi$. **Lemma 2.3** If $D_{Id}(P_n^* - \{2n\}, j) \neq \varphi$ then $D_{Id}(P_n^* - \{2n\}, j-1) = \varphi$ and $D_{Id}(P_{n-1}^* - \{2n-2\}, j-1) \neq \varphi$ iff j = n - 1. **Theorem 2.4** For every $n \ge 2$, $D_{Id}(P_n^* - \{2n\}, j-1) = \varphi$ and $D_{Id}(P_{n-1}^* - \{2n-2\}, j-1) \neq \varphi$ then $D_{Id}(P_n^* - \{2n\}, j) = \{\{1, 3, 5, ..., 2n - 3\}\}$. **Proof:** Since $D_{Id}(P_n^* - \{2n\}, j-1) = \varphi$ and $D_{Id}(P_{n-1}^* - \{2n-2\}, j-1) \neq \varphi$ From lemma (2.3) we have j = n - 1Therefore $D_{Id}(P_n^* - \{2n\}, j) = D_{Id}(P_n^* - \{2n\}, n-1) = \{\{1, 3, 5, ..., 2n - 3\}\}$.

3. Interior Dominating Sets Of P_n^*

Lemma: 3.1 Let P_n^* be the centipede with 2n vertices for every $n \ge 2$. (a) $\gamma_{Id}(P_n^*) = n$ (b) $D_{Id}(P_n^*, j)$ is empty iff j > n or j < n(c) $D_{Id}(P_n^*, j)$ is non empty iff j = n

Lemma (3.2) and (3.3) follows from the lemma 3.1 (b) and (c) **Lemma 3.2** If $D_{Id}(P_n^*, j-1) = \varphi$ and $D_{Id}(P_{n-1}^*, j-1) \neq \varphi$ then $D_{Id}(P_n^*, j) \neq \varphi$. **Lemma 3.3** If $D_{Id}(P_n^*, j) \neq \varphi$ then $D_{Id}(P_n^*, j-1) = \varphi$ and $D_{Id}(P_{n-1}^*, j-1) \neq \varphi$ iff j = n. **Theorem 3.4** For every $n \ge 2$, $D_{Id}(P_n^*, j-1) = \varphi$ and $D_{Id}(P_{n-1}^*, j-1) \neq \varphi$ then $D_{Id}(P_n^*, j) = \{\{1,3,5, \dots, 2n-1\}\}$. **Proof:** Since $D_{Id}(P_n^*, j-1) = \varphi$ and $D_{Id}(P_{n-1}^*, j-1) \neq \varphi$

http://xisdxjxsu.asia

VOLUME 18 ISSUE 01

520-523

From lemma (3.3) we have j = nTherefore $D_{Id}(P_n^*, j) = D_{Id}(P_n^*, n) = \{\{1, 3, 5, ..., 2n - 1\}\}.$

4. Interior Domination Polynomials Of $P_n^* - \{2n\}$

Definition 4.1 Let $D_{Id}(P_n^* - \{2n\}, j)$ be the family of interior dominating sets of a centipede $P_n^* - \{2n\}$ with cardinality j and Let $d_{Id}(P_n^* - \{2n\}, j) = |D_{Id}(P_n^* - \{2n\}, j)|$. Then the interior domination polynomial $D_{Id}(P_n^* - \{2n\}, x)$ of $P_n^* - \{2n\}$ is defined as $D_{Id}(P_n^* - \{2n\}, x) = d_{Id}(P_n^* - \{2n\}, j)x^j$ where j = n - 1

Theorem 4.2

(a) If $D_{Id}(P_n^* - \{2n\}, x)$ is the family of interior dominating sets with cardinality j of $P_n^* - \{2n\}$ then $d_{Id}(P_n^* - \{2n\}, j) = d_{Id}(P_{n-1}^* - \{2n-2\}, j-1)$ where $d_{Id}(P_n^* - \{2n\}, j) = |D_{Id}(P_n^* - \{2n\}, j)|$. (b) For every ≥ 2 , $D_{Id}(P_n^* - \{2n\}, x) = x[D_{Id}(P_{n-1}^* - \{2n-2\}, x)]$ **Proof** (a) From theorem (2.4) we have $D_{Id}(P_n^* - \{2n\}, j) = \{\{1,3,5,...,2n-3\}\}$. Therefore $|D_{Id}(P_n^* - \{2n\}, j)| = |D_{Id}(P_{n-1}^* - \{2n-2\}, j-1)|$ Therefore $d_{Id}(P_n^* - \{2n\}, j) = d_{Id}(P_n^* - \{2n-2\}, j-1)|$ where $d_{Id}(P_n^* - \{2n\}, j) = |D_{Id}(P_n^* - \{2n\}, j)|$.

(b) We have
$$d_{Id}(P_n^* - \{2n\}, j) = d_{Id}(P_n^* - \{2n-2\}, j-1)$$

 $d_{Id}(P_n^* - \{2n\}, j)x^j = d_{Id}(P_n^* - \{2n-2\}, j-1)x^j$
 $\Sigma d_{Id}(P_n^* - \{2n\}, j)x^j = \Sigma d_{Id}(P_n^* - \{2n-2\}, j-1)x^j$
 $= x[D_{Id}(P_{n-1}^* - \{2n-2\}, x)].$

5. Interior Domination Polynomials Of P^{*}_n

Definition 5.1 Let $D_{Id}(P_n^*, j)$ be the family of interior dominating sets of a centipede P_n^* with cardinality j and Let $d_{Id}(P_n^*, j) = |D_{Id}(P_n^*, j)|$. Then the interior domination polynomial $D_{Id}(P_n^*, x)$ of P_n^* is defined as $D_{Id}(P_n^*, x) = d_{Id}(P_n^*, j)x^j$ where j = n**Theorem 5.2**

(a) If $D_{Id}(P_n^*, x)$ is the family of interior dominating sets with cardinality j of P_n^* then $d_{Id}(P_n^*, j) = d_{Id}(P_{n-1}^*, j-1)$ where $d_{Id}(P_n^*, j) = |D_{Id}(P_n^*, j)|$. (b) For every ≥ 2 , $D_{Id}(P_n^*, x) = x[D_{Id}(P_{n-1}^*, x)]$ **Proof** (a) From theorem (3.4) we have $D_{Id}(P_n^*, j) = \{\{1, 3, 5, ..., 2n - 1\}\}$. Therefore $|D_{Id}(P_n^*, j)| = |D_{Id}(P_{n-1}^*, j-1)|$ Therefore $d_{Id}(P_n^*, j) = d_{Id}(P_{n-1}^*, j-1)$ where $d_{Id}(P_n^*, j) = |D_{Id}(P_{n-1}^*, j-1)|$ (b) We have $d_{Id}(P_{n,j}^*) = d_{Id}(P_{n-1,j}^* - 1)$ $d_{Id}(P_{n,j}^*)x^j = d_{Id}(P_{n-1,j}^* - 1)x^j$ $\sum d_{Id}(P_{n,j}^*)x^j = \sum d_{Id}(P_{n-1,j}^* - 1)x^j$ $= x[D_{Id}(P_{n-1,j}^*, x)].$ We obtain $d_{Id}(P_n^*, j)$ and $d_{Id}(P_n^* - \{2n\}, j)$ for $2 \le n \le 5$ as shown in table (1)

j/n	1	2	3	4	5
$P_2^* - \{4\}$	1				
P ₂ *	0	1			
$P_3^* - \{6\}$	0	1			
P ₃ *	0	0	1		
$P_4^* - \{8\}$	0	0	1		
P_4^*	0	0	0	1	
$P_5^* - \{10\}$	0	0	0	1	
P ₅ *	0	0	0	0	1

Table 1 : (P_n^*, j) and $d_{Id}(P_n^* - \{2n\}, j)$

In the following theorem we include some properties of $d_{Id}(P_n^*, j)$ and $d_{Id}(P_n^* - \{2n\}, j)$.

Theorem 5.3

The following properties hold for the coefficients of $D_{Id}(P_n^*, j)$ and $D_{Id}(P_n^* - \{2n\}, j)$. (i) $d_{Id}(P_n^*, n) = 1$, for every $n \ge 2$ (ii) $d_{Id}(P_n^* - \{2n\}, n-1) = 1$, for every $n \ge 2$

Proof

Proof is obvious

6. Conclusion

In this paper we have described the interior dominating sets and some properties of interior domination polynomials of centipedes.

REFERENCES

- [1]. S. Alikhani and Y. H. Peng, "Dominating Sets and Domination Polynomials of Paths", International journal of Mathematics and mathematical sciences, 2009.
- [2]. S. Alikhani and Y. H. Peng, "Introduction to Domination Polynomial of Graph", arXiv : 0905.225 [v] [math.co] 14 may, 2009.
- [3]. S. Alikhani and Y. H. Peng, "Dominating Sets of Centipedes", Journal of discreate Mathematical Sciences and Cryptography, August 2009.
- [4]. A. Anto Kinsely and C. Caroline Selvaraj, "A study on Interior Domination in Graphs", IOSR Journal of Mathematics (IOSR-JM), 12(2-VI), 55-59, (2016).
- [5]. R. Ajitha and K. Lal Gipson, "Interior Domination Sets and Interior Domination Polynomials of Paths", AIP Conference proceedings 2261, 030095(2020); <u>https://doi.org/10.1063/5.0016838</u>, October 05 2020
- [6]. A. Vijayan and K. Lal Gipson, "Domination Sets and Domination Polynomials Square of Paths", Open Journal of Discrete Mathematics, 3, 60-69, January-2013, USA.