# Secure Dominating Sets and Secure Domination Polynomials of Centipedes

# K. Lal Gipson\*, Subha T\*\*

\* Assistant Professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629003, India.

Abstract- Let G = (V, E) be a simple graph. A dominating set S of G is a secure dominating set if for each  $u \in V - S$  there exists  $v \in N(u) \cap S$  such that  $(S - \{v\} \cup \{u\})$  is a dominating set. Let  $P_n^*$  be the centipede with 2n vertices and let  $\mathcal{D}_S(P_n^*, i)$  denote the family of all secure dominating sets of  $P_n^*$  with cardinality i. Let  $d_S(P_n^*, i) = |\mathcal{D}_S(P_n^*, i)|$ . In this paper, we obtain recursive formula for  $d_S(P_n^*, i)$ . Using this recursive formula, we construct the polynomial,  $\mathcal{D}_S(P_n^*, x) = \sum_{i=n}^{2n} d_S(P_n^*, i) x^i$  which we call secure domination polynomial of  $P_n^*$  and obtain some properties of this polynomial.

*Index Terms*- domination, secure domination, secure domination number, secure dominating set, secure domination polynomial.

## 2010 Mathematics Subject Classification: 05C69,05C31

### I. Introduction

 $\mathbf{B}$  y a graph G = (V, E), we mean a finite, undirected graph with neither loops nor multiple edges. The order |V| and the size |E| of G are denoted by n and m respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [3]. For any vertex  $v \in V$ , the open neighborhood of v is the set  $N(v) = \{u \in V | uv \in E\}$  and the closed neighborhood of v is the set  $N[v] = N(v) \cup \{v\}$ . For a set  $S \subseteq V$ , the open neighborhood of S is  $N(S) = \bigcup_{v \in S} N(v)$  and the closed neighborhood of S is  $N[S] = N(S) \cup S$ . A set  $S \subseteq V$  is a dominating set of G, if N[S] = V, or equivalently, every vertex in V - S is adjacent to at least one vertex in S. A dominating set S of G is a secure dominating set if for each  $u \in V - S$  there exists  $v \in N(u) \cap S$ such that  $(S - \{v\}) \cup \{u\}$  is a dominating set. In this case we say that u is S- defended by v or v S-defends u. The secure domination number  $\gamma_s(G)$  is the minimum cardinality of a secure dominating set. The concept secure dominating set is introduced by Cockayne et al [4]. A simple path is a path in which all its internal vertices have degree two, and the end vertices have degree one and is denoted by  $P_n$ . Let  $P_n^*$  denotes the centipede with 2n vertices obtained by appending a single pendant edge to each vertex of a path  $P_n$ . For the definition of centipede, we refer S. Alikhani and Y-H. Peng [2].

# Definition 1.1[9].

Let G be a simple connected graph. Let  $\mathcal{D}_s(G, i)$  denote the family of all secure dominating set of G with cardinality i and let  $d_s(G, i) = |\mathcal{D}_s(G, i)|$ . Then the secure domination

polynomial  $D_s(G,x)$  of G is defined as  $\mathcal{D}_s(G,x) = \sum_{i=\gamma_s(G)}^{|V(G)|} d_s(G,i)x^i$ , where  $\gamma_s(G)$  is the secure domination number of G.

As usual we use [x] for the largest integer less than or equal to x and [x] for the smallest integer greater than or equal to x. Also, we denote the set  $\{1,2,...,n\}$  by [n], throughout this paper.

In the next section we study secure dominating sets and secure domination polynomial of  $P_n^* - \{2n\}$ , which is needed for the study of secure dominating sets of centipedes.

II. SECURE DOMINATING SETS AND SECURE DOMINATION POLYNOMIOAL OF  $P_n^* - \{2n\}$ 

## Lemma 2.1

For every  $n \in \mathbb{N}$ 

- i)  $\gamma_{\sigma}(P_n^*) = n$
- ii)  $\gamma_s(P_n^* \{2n\}) = n$
- iii)  $\mathcal{D}_s(P_n^*, i) = \emptyset$  if and only if i < n or i > 2n
- iv)  $\mathcal{D}_s(P_n^* \{2n\}, i) = \emptyset$  if and only if i < n or i > 2n 1.

### Lemma 2.2

- i) If  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-2}^*, i-2) = \emptyset$ , then  $\mathcal{D}_s(P_{n-1}^* \{2n-2\}, i-2) \neq \emptyset$ .
- ii) If  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-1}^* \{2n-2\}, i-2) = \emptyset$ , then  $\mathcal{D}_s(P_{n-2}^*, i-2) \neq \emptyset$ .
- iii) If  $\mathcal{D}_s(P_{n-1}^* \{2n-2\}, i-2) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-2}^*, i-2) \neq \emptyset$ , then  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ .

# **Proof:**

- i) Since  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ , by Lemma 2.1(iii),  $n-1 \leq i-1 \leq 2n-2$ .  $\Rightarrow n-2 \leq i-2 \leq 2n-3$  Also n-2 < n-1. Therefore, by Lemma 2.1(iv),  $\mathcal{D}_s(P_{n-1}^* \{2n-2\}, i-2) \neq \emptyset$ .
- i) Since  $\mathcal{D}_{s}(P_{n-1}^{*}, i-1) \neq \emptyset$ , by Lemma 2.1(iii),  $n-1 \leq i-1 \leq 2n-2$ .  $\Rightarrow n-2 \leq i-2$  (1)
  Since  $\mathcal{D}_{s}(P_{n-1}^{*} - \{2n-2\}, i-2) = \emptyset$ , by Lemma 2.1(iv), i-2 < n-1 or i-2 > 2n-3.  $\Rightarrow i-2 \leq n-1$  (2)
  From (1) and (2), we have i-2 = n-2. By Lemma 2.1(iii),  $\mathcal{D}_{s}(P_{n-2}^{*}, i-2) \neq \emptyset$ .

36-40

<sup>\*\*</sup> Research Scholar, Reg. No.: 18213112092017, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629003, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, India.

iii) Since 
$$\mathcal{D}_s(P_{n-2}^*,i-2) \neq \emptyset$$
, by Lemma 2.1(iii),  $n-2 \leq i-2 \leq 2n-4$ .  $\Rightarrow n-1 \leq i-1 \leq 2n-3$  (3) Since  $\mathcal{D}_s(P_{n-1}^* - \{2n-2\},i-2) \neq \emptyset$ , by Lemma 2.1(iv),  $n-1 \leq i-2 \leq 2n-3$ .  $\Rightarrow n \leq i-1 \leq 2n-2$  (4) From (3) and (4), we have  $n-1 \leq i-1 \leq 2(n-1)$ . By Lemma2.1(iii),  $\mathcal{D}_s(P_{n-1}^*,i-1) \neq \emptyset$ .

## Lemma 2.3

For every  $n \ge 3$ ,

- i)  $\mathcal{D}_{s}(P_{n-1}^{*}, i-1) \neq \emptyset$ ,  $\mathcal{D}_{s}(P_{n-1}^{*} \{2n-2\}, i-2) \neq \emptyset$  and  $\mathcal{D}_{s}(P_{n-2}^{*}, i-2) = \emptyset$  if and only if i = 2n 1.
- ii)  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ ,  $\mathcal{D}_s(P_{n-2}^*, i-2) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-1}^* \{2n-2\}, i-2) = \emptyset$  if and only if i = n.
- iii)  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^* \{2n-2\}, i-2) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-2}^*, i-2) \neq \emptyset$  if and only if  $n+1 \leq i \leq 2n-2$ .

## **Proof:**

- i) (⇒) Since  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ , by Lemma 2.1(iii),  $n-1 \le i-1 \le 2n-2$ .  $\implies i - 1 \le 2n - 2$  $\implies i \le 2n - 1$ (5) Since  $\mathcal{D}_s(P_{n-2}^*, i-2) = \emptyset$ , by Lemma 2.1(iii), i - 2 < n - 2 or i - 2 > 2n - 4.  $\implies$  i < n or i > 2n - 2. (6) From (5) and (6),  $2n - 2 < i \le 2n - 2$ . Hence i = 2n - 1.  $(\Leftarrow)$  Suppose i = 2n - 1. Then i - 2 = 2n - 3 > 2(n - 2). By Lemma 2.1(iii),  $\mathcal{D}_s(P_{n-2}^*,i-2)=\emptyset.$ Since i - 1 = 2(n - 1), by Lemma 2.1(iii),  $\mathcal{D}_{s}(P_{n-1}^{*}, i-1) \neq \emptyset.$ Since i-2=29n-1)-1, Lemma 2.1(iv),  $\mathcal{D}_s(P_{n-1}^* - \{2n-2\}, i-2) \neq \emptyset$ .
- ii)  $(\Longrightarrow)$  Since  $\mathcal{D}_s(P_{n-1}^*,i-1) \neq \emptyset$ , by Lemma 2.1(iii),  $n-1 \leq i-1 \leq 2n-2$ .  $\implies n \leq i$  (7) Since  $\mathcal{D}_s(P_{n-1}^* \{2n-2\},i-2) = \emptyset$ , by Lemma 2.1(iv), i-2 < n-1 or i-2 > 2n-3.  $\implies i < n+1$  (8) From (7) and (8), i=n.  $(\leftrightharpoons)$  Suppose i=n. Then i-1=n-1. By Lemma 2.1(iii),  $\mathcal{D}_s(P_{n-1}^*,i-1) \neq \emptyset$ . Similarly, we prove  $\mathcal{D}_s(P_{n-2}^*,i-2) \neq \emptyset$ . Since i=n, i-2=n-2 < n-1. By Lemma2.1(iv),  $\mathcal{D}_s(P_{n-1}^* \{2n-2\},i-2) = \emptyset$ .
- iii) ( $\Rightarrow$ ) Since  $\mathcal{D}_s(P_{n-1}^* \{2n-2\}, i-2) \neq \emptyset$ , by Lemma 2.1(iv),  $n-1 \leq i-2 \leq 2n-3$ .  $\Rightarrow n+1 \leq i \leq 2n-1$
- III. SECURE DOMINATING SETS AND SECURE DOMINATION POLYNOMIALS OF CENTIPEDES

In this section, we investigate secure dominating sets and secure domination polynomials of centipede.

$$\begin{array}{l} \Longrightarrow n+\le i & (9) \\ \text{Since } \mathcal{D}_s \big( P_{n-2}^*, i-2 \big) \neq \emptyset \text{ , by Lemma 2.1(iii), } \\ n-2 \le i-2 \le 2n-4 \text{ .} \\ \Longrightarrow i-2 \le 2n-4 \\ \Longrightarrow i \le 2n-2 & (10) \\ \text{From (9) and (10), } n+1 \le i \le 2n-2 \text{.} \\ (\leftrightharpoons) \text{ Suppose } n+1 \le i \le 2n-2 \text{.} \\ \text{Then } i \le 2n-2 \text{.} \\ \Longrightarrow i-2 \le 2n-4 \\ \text{By Lemma 2.1(iii), } \mathcal{D}_s \big( P_{n-2}^*, i-2 \big) \neq \emptyset \text{.} \\ \text{Since } n+1 \le i, \quad n-1 \le i-2 \text{. By Lemma 2.1(iv), } \\ \mathcal{D}_s \big( P_{n-1}^* - \{2n-2\}, i-2 \big) \neq \emptyset \text{.} \\ \text{Since } \mathcal{D}_s \big( P_{n-1}^* - \{2n-2\}, i-2 \big) \neq \emptyset \text{ and } \\ \mathcal{D}_s \big( P_{n-2}^*, i-2 \big) \neq \emptyset \text{, by Lemma 2.2(iii), } \\ \mathcal{D}_s \big( P_{n-1}^*, i-1 \big) \neq \emptyset \text{.} \end{array}$$

## Theorem 2.4

i) If  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^* - \{2n-2\}, i-2) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-2}^*, i-2) = \emptyset$ , then

$$\mathcal{D}_{s}(P_{n}^{*} - \{2n\}, i) = \begin{cases} X \cup \{2n - 1\} \\ /X \in \mathcal{D}_{s}(P_{n-1}^{*}, i - 1) \end{cases}$$

ii) If  $\mathcal{D}_{s}(P_{n-1}^{*}, i-1) \neq \emptyset$ ,  $\mathcal{D}_{s}(P_{n-2}^{*}, i-2) \neq \emptyset$  and  $\mathcal{D}_{s}(P_{n-1}^{*} - \{2n-2\}, i-2) = \emptyset$ , then

$$\mathcal{D}_{s}(P_{n}^{*} - \{2n\}, i) = \begin{cases} X \cup \{2n - 3, 2n - 2\}, \\ X \cup \{2n - 3, 2n - 1\}, \\ X \cup \{2n - 2, 2n - 1\}, \\ /X \in \mathcal{D}_{s}(P_{n-2}^{*}, i - 2) \end{cases}$$

iii) If  $\mathcal{D}_{s}(P_{n-1}^{*}, i-1) \neq \emptyset$ ,  $\mathcal{D}_{s}(P_{n-1}^{*} - \{2n-2\}, i-2) \neq \emptyset$  and  $\mathcal{D}_{s}(P_{n-2}^{*}, i-2) \neq \emptyset$ , then  $\mathcal{D}_{s}(P_{n}^{*} - \{2n\}, i)$   $\begin{cases} X_{1} \cup \{2n-3, 2n-2\}, \\ X_{1} \cup \{2n-3, 2n-1\}, \end{cases}$ 

$$D_{s}(P_{n} - \{2n\}, t)$$

$$= \begin{cases} X_{1} \cup \{2n - 3, 2n - 2\}, \\ X_{1} \cup \{2n - 3, 2n - 1\}, \\ X_{1} \cup \{2n - 2, 2n - 1\}, \\ /X_{1} \in \mathcal{D}_{s}(P_{n-2}^{*}, i - 2) \end{cases}$$

$$\cup \begin{cases} X_{2} \cup \{2n - 2, 2n - 1\}, \\ /X_{2} \in \mathcal{D}_{s}(P_{n-1}^{*} - \{2n - 2\}, i - 2) \end{cases}$$

# Theorem 2.5

For every  $n \ge 3$ ,

$$|\mathcal{D}_s(P_n^* - \{2n\}, i)| = |\mathcal{D}_s(P_{n-1}^*, i-1)| + |\mathcal{D}_s(P_{n-2}^*, i-2)|.$$
**Proof:**

It follows from Theorem 2.4.

Here we state recursive formula for the secure domination polynomial of  $P_n^* - \{2n\}$ .

## Theorem 2.6

For every  $n \ge 3$ ,

$$D_s(P_n^* - \{2n\}, x) = xD_s(P_{n-1}^*, x) + x^2D_s(P_{n-2}^*, x).$$

### Proof

It follows from the definition of secure domination polynomial and Theorem 2.5.

# Lemma 3.1

- i) If  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-1}^*, i-2) = \emptyset$ , then  $\mathcal{D}_s(P_n^* \{2n\}, i-1) \neq \emptyset$ .
- ii) If  $\mathcal{D}_s(P_{n-1}^*, i-1) = \emptyset$  and  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$ , then  $\mathcal{D}_s(P_n^* \{2n\}, i-1) \neq \emptyset$ .
- iii) If  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$  and  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$ , then  $\mathcal{D}_s(P_n^* \{2n\}, i-1) \neq \emptyset$ .

## **Proof:**

- i) Since  $\mathcal{D}_s(P_{n-1}^*, i-2) = \emptyset$ , by Lemma 2.1 (iii), i-2 < n-1 or i-2 > 2n-2.  $\Rightarrow i-1 < n$  or i-1 > 2n-1. By Lemma 2.1(iv),  $\mathcal{D}_s(P_n^* \{2n\}, i-1) = \emptyset$ .
- ii) Since  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$ , by Lemma 2.1(iii),  $n-1 \leq i-2 \leq 2n-2$ .  $\Rightarrow n \leq i-1 \leq 2n-1$ By Lemma 2.1(iv),  $\mathcal{D}_s(P_n^* - \{2n\}, i-1) \neq \emptyset$ .
- iii) Since  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$ , by Lemma 2.1(iii) and (iv),  $\mathcal{D}_s(P_n^* \{2n\}, i-1) \neq \emptyset$ .

## Lemma 3.2

- i)  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^*, i-2) = \emptyset$  and  $\mathcal{D}_s(P_n^* \{2n\}, i-1) = \emptyset$  if and only if i = n.
- ii)  $\mathcal{D}_s(P_{n-1}^*, i-1) = \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$  and  $\mathcal{D}_s(P_n^* \{2n\}, i-1) \neq \emptyset$  if and only if i = 2n.
- iii)  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$  and  $\mathcal{D}_s(P_n^* \{2n\}, i-1) \neq \emptyset$  if and only if  $n+1 \leq i \leq 2n-1$ .

# **Proof:**

- i)  $(\Longrightarrow)$  Since  $\mathcal{D}_s(P_{n-1}^*,i-1) \neq \emptyset$  and  $\mathcal{D}_s(P_n^*-\{2n\},i-1) = \emptyset$  by Lemma 2.1(iii) and (iv),  $n \leq i$  and i < n+1. We have i=n.  $(\leftrightharpoons)$  Suppose i=n. Then i-1=n-1. By Lemma 2.1(iii),  $\mathcal{D}_s(P_{n-1}^*,i-1) \neq \emptyset$  and  $\mathcal{D}_s(P_n^*-\{2n\},i-1) = \emptyset$ .
  - $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$  and  $\mathcal{D}_s(P_n^* \{2n\}, i-1) = \emptyset$ . Since i = n, n-1 = i-1 > i-2. By Lemma 2.1(iii),  $\mathcal{D}_s(P_{n-1}^*, i-2) = \emptyset$ .
- ii)  $(\Rightarrow)$  Since  $\mathcal{D}_{s}(P_{n-1}^{*}, i-1) = \emptyset$ , by Lemma 2.1(iii), i-1 < n-1 or i-1 > 2n-2.  $\Rightarrow i > 2n-1$  (11)

  Since  $\mathcal{D}_{s}(P_{n}^{*} - \{2n\}, i-1) \neq \emptyset$ , by Lemma 2.1(iv),  $n+1 \le i-1 \le 2n-1$ .  $\Rightarrow i \le 2n$  (12)

From (11) and (12), we have i = 2n.

- $(\Leftarrow)$  Suppose i = 2n.
- Then i 1 = 2n 1. By Lemma 2.1(iv),
- $\mathcal{D}_{s}(P_{n}^{*}-\{2n\},i-1)\neq\emptyset.$
- Since i = 2n, i 2 = 2n 2. By Lemma 2.1(iii),  $\mathcal{D}_{s}(P_{n-1}^{*}, i 2) \neq \emptyset$ .
- Since i = 2n, i 1 = 2n 1 > 2n 2. By Lemma 2.1(iii),  $\mathcal{D}_s(P_{n-1}^*, i 1) = \emptyset$ .
- iii)  $(\Longrightarrow)$  Since  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ , by Lemma 2.1(iii),  $n-1 \leq i-1 \leq 2n-2$ .  $\implies i \leq 2n-1$  (13) Since  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$ , by Lemma 2.1(iv),  $n-1 \leq i-2 \leq 2n-2$ .

⇒ 
$$n + 1 \le i$$
 (14)  
From (13) and (14), we have  $n + 1 \le i \le 2n - 1$ .  
(←) Suppose  $n + 1 \le i \le 2n - 1$ .  
Then  $n \le i - 1$ . By Lemma 2.1(iv),  
 $\mathcal{D}_s(P_n^* - \{2n\}, i - 1) \ne \emptyset$ .  
Since  $n + 1 \le i$ ,  $n - 1 \le i - 2$ . By Lemma 2.1(iii),  
 $\mathcal{D}_s(P_{n-1}^*, i - 2) \ne \emptyset$ .  
Since  $i \le 2n - 1$ ,  $i - 1 \le 2n - 2$ . By Lemma 2.1(iii),  
 $\mathcal{D}_s(P_{n-1}^*, i - 1) \ne \emptyset$ .

# Theorem 3.3

i) If  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^*, i-2) = \emptyset$  and  $\mathcal{D}_s(P_n^* - \{2n\}, i-1) = \emptyset$ , then  $\left( X \cup \{2n-1\}, \right)$ 

$$\mathcal{D}_{s}(P_{n}^{*},i) = \begin{cases} X \cup \{2n-1\}, \\ X \cup \{2n\} \\ /X \in \mathcal{D}_{s}(P_{n-1}^{*},i-1) \end{cases}$$

- ii) If  $\mathcal{D}_s(P_{n-1}^*, i-1) = \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$  an  $\mathcal{D}_s(P_n^* \{2n\}, i-1) = \emptyset$ , then  $\mathcal{D}_s(P_n^*, i) = \{X \cup \{2n\}/X \in \mathcal{D}_s(P_n^* \{2n\}, i-1)\}.$
- iii) If  $\mathcal{D}_s(P_{n-1}^*, i-1) \neq \emptyset$ ,  $\mathcal{D}_s(P_{n-1}^*, i-2) \neq \emptyset$  and  $\mathcal{D}_s(P_n^* \{2n\}, i-1) \neq \emptyset$ , then

$$\mathcal{D}_{s}(P_{n}^{*},i) = \begin{cases} X_{1} \cup \{2n-1\}, \\ X_{1} \cup \{2n\} \\ /X_{1} \in \mathcal{D}_{s}(P_{n-1}^{*},i-1) \end{cases}$$

$$\cup \begin{cases} X_{2} \cup \{2n\} \\ /X_{2} \in \mathcal{D}_{s}(P_{n}^{*} - \{2n\},i-1) \end{cases}$$

# i 1 2 3 4 5 6 7 8 9 10

| $P_1^* - \{2\}$                                       | 1 |   |   |    |    |    |    |    |    |   |
|-------------------------------------------------------|---|---|---|----|----|----|----|----|----|---|
| $P_1^*$                                               | 2 | 1 |   |    |    |    |    |    |    |   |
| $P_2^* - \{4\}$                                       | 0 | 3 | 1 |    |    |    |    |    |    |   |
| $P_2^*$                                               | 0 | 4 | 4 | 1  |    |    |    |    |    |   |
| $P_3^* - \{6\}$                                       | 0 | 0 | 6 | 5  | 1  |    |    |    |    |   |
| $P_3^*$                                               | 0 | 0 | 8 | 12 | 6  | 1  |    |    |    |   |
| $P_4^* - \{8\}$                                       | 0 | 0 | 0 | 12 | 16 | 7  | 1  |    |    |   |
| $P_4^*$                                               | 0 | 0 | 0 | 16 | 32 | 24 | 8  | 1  |    |   |
| $P_5^* - \{10\}$                                      | 0 | 0 | 0 | 0  | 24 | 44 | 30 | 9  | 1  |   |
| $P_5^*$                                               | 0 | 0 | 0 | 0  | 32 | 80 | 80 | 40 | 10 | 1 |
| Table 1: $d_s(P_n^*, i)$ and $d_s(P_n^* - \{2n\}, i)$ |   |   |   |    |    |    |    |    |    |   |

Theorem 3.4

For every  $n \ge 3$ ,

$$|\mathcal{D}_{s}(P_{n}^{*},i)| = |\mathcal{D}_{s}(P_{n}^{*} - \{2n\}, i-1)| + |\mathcal{D}_{s}(P_{n-1}^{*}, i-1)| + 2|\mathcal{D}_{s}(P_{n-1}^{*}, i-2)|$$

#### Proof:

It follows from Theorem 3.3.

## Theorem 3.5

For every  $n \ge 3$ ,

$$D_s(P_n^*, x) = xD_s(P_n^* - \{2n\}, x) + xD_s(P_{n-1}^*, x) + 2x^2D_s(P_{n-2}^*, x)$$

## **Proof:**

It follows from the definition of secure domination polynomial and Theorem 3.4.

#### Theorem 3.6

For every 
$$n \ge 2$$
,  $D_s(P_n^* - \{2n\}, x) = x^n(x+2)^{n-2}(x+3)$  and  $D_s(P_n^*, x) = x^n(x+2)^n$ .

# **Proof:**

We shall prove both the equalities together by induction on n.

Since 
$$D_s(P_2^* - \{2n\}, x) = x^2(x+2)^{2-2}(x+3) = x^2(x+3)$$
 and  $D_s(P_2^*, x) = x^2(x+2)^2$ . We have the result for  $n = 2$ .

Now, suppose the result are true for all-natural numbers less than n.

By Theorem 2.6 and induction hypothesis, we have:

$$D_s(P_n^* - \{2n\}, x) = xD_s(P_{n-1}^*, x) + x^2D_s(P_{n-2}^*, x)$$

$$= x(x^{n-1}(x+2)^{n-1}) + x^2(x^{n-2}(x+2)^{n-2})$$

$$= x^n(x+2)^{n-2}(1+x+2)$$

$$= x^n(x+2)^{n-2}(x+3)$$

Now, by Theorem 3.5 and induction hypothesis, we have:

$$D_s(P_n^*, x) = x \left( x^n (x+2)^{n-2} (x+3) \right) + x \left( x^{n-1} (x+2)^{n-1} \right)$$

$$+ 2x^2 (x^{n-2} (x+2)^{n-2})$$

$$= x^n (x+2)^{n-2} (x(x+3) + (x+2) + 2)$$

$$= x^n (x+2)^{n-2} (x^2 + 4x + 4)$$

$$= x^n (x+2)^{n-2} (x+2)^2$$

$$= x^n (x+2)^n$$

## Theorem 3.7

- i)  $d_s(P_n^*, i) = 2^{2n-i} \binom{n}{i-n}$ , for every  $n \in \mathbb{N}$  and  $n \le i \le 2n$ .
- ii)  $d_s(P_n^* \{2n\}, i) = 2^{2n-i-2} (2\binom{n-1}{i-n} + \binom{n-2}{i-n}),$  for  $n \ge 2$  and  $n \le i \le 2n-1$ .

## **Proof:**

i) By Theorem 3.6,  $D_s(P_n^*, x) = x^n(x+2)^n$   $= \sum_{k=0}^n \binom{n}{k} 2^{n-k} x^{n+k}$ Thus, we have  $d_s(P_n^*, n+k) = 2^{n-k} \binom{n}{k}, \text{ for } 0 \le k \le n.$ Equivalently  $d_s(P_n^*, i) = 2^{2n-i} \binom{n}{i-n}, \text{ for } n \le i \le 2n.$ 

ii) By Theorem 2.5,  

$$d_s(P_n^* - \{2n\}, i) = d_s(P_{n-1}^*, i-1) + d_s(P_{n-2}^*, i-2)$$

$$= 2^{2n-i-1} \binom{n-1}{i-n} + 2^{2n-i-2} \binom{n-2}{i-n}$$

$$= 2^{2n-i-2} \left( 2 \binom{n-1}{i-n} + \binom{n-2}{i-n} \right)$$

## IV. CONCLUSION

This paper discusses and analyses the secure dominating sets of centipede and secure domination polynomials of centipede. Using recursive formula, we constructed the polynomial  $D_s(P_n^*,x)=\sum_{i=n}^{2n}d_s\left(P_n^*,i\right)x^i$ , which we call secure domination polynomial of  $P_n^*$  and obtain some properties of this polynomial.

#### ACKNOWLEDGMENT

The authors would like to thank the anonymous referee for his or her valuable suggestions that have improved the original paper.

#### REFERENCES

- [1] S.Alikhani and Y-H.Peng, "Dominating Sets and Domination Polynomials of Paths", *International Journal of Mathematics and Mathematical Sciences*, Vol.2009, 2009, Article ID 542040.
- [2] S.Alikhani and Y-H.Peng, "Dominating Sets of centipedes", Journal of Discrete Mathematical Sciences & Cryptography, Vol.12 (2009), No.4, pp. 411-428.
- [3] G. Chartrand and L. Lesniak (2005), Graphs & Digraphs, Fourth Edition, Champman \& Hall / CRC.
- [4] E.J.Cockayne, P.J.P.Grobler, W.R.Grundlingh J.Munganga and J.H.Van Vuuren, "Protection of a graph", *Util, Math.*, 67(2005),19-32.
- [5] S.V.Divya Rashmi, S.Arumugam and Ibrahim Venkat, "Secure Domination in Graphs", *Int.J.Advance. Soft Comput. Appl.*, 8(2) (2016), 79-83.
- [6] Frank Harary, Graph Theory, Addison-Wesley Publishing Company, Inc.
- [7] J. Gross and J. Yellen, Handbook of Graph Theory, CRC Press(2004).
- [8] T W Haynes, S T Hedetniemi and P.J Slater, "Fundamentals of Domination in Graphs", Marcel Dekker, New York, 1998.
- [9] K. Lal Gipson, Subha T, "Secure Domination Polynomials Of Paths", International Journal of Scientific & Technology Research, Volume 9, Issue 2(Feb 2020), 6517-6521.
- [10] A.Vijayan and K.Lal Gipson, "Dominating Sets and Domination Polynomials of Square of Paths", Open Journal of Discrete Mathematics, 2013, 3,60-69.
- [11] A. Vijayan and K. Lal Gipson, "Dominating Sets of Square of Centipedes", International Journal of Mathematical Archive, 4(2), 2013, 298-310.

## **AUTHORS**

**First Author** – Dr. K. Lal Gipson, M.Sc., M.Phil., Ph.D., Assistant Professor, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629003, India. E-mail: lalgipson@yahoo.com

**Second Author** — Subha T, M.Sc., M.Phil., Research Scholar, Reg. No.: 18213112092017, Department of Mathematics, Scott Christian College (Autonomous), Nagercoil-629003, India. E-mail: <a href="mailto:subhabijudani@gmail.com">subhabijudani@gmail.com</a>. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, India.

**Correspondence Author** – Subha T, E-mail: <a href="mailto:subhabijudani@gmail.com">subhabijudani@gmail.com</a>, Mobile: 09633363087