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Abstract- Let G = (V, E) be a simple graph. A dominating set S
of G is a secure dominating set if for each u € V — S there exists
v € N(u) N S such that (S — {v} U {u}) is a dominating set. Let
P;, be the centipede with 2n vertices and let D, (P, i) denote the
family of all secure dominating sets of P}, with cardinality i. Let
d,(P:,i)) = |D,(P:,0)|. In this paper, we obtain recursive
formula for d (P}, i). Using this recursive formula, we construct
the polynomial, D (P., x) = Y. d, (P.,i)x" which we call
secure domination polynomial of P; and obtain some properties
of this polynomial.

Index Terms- domination, secure domination, secure domination
number, secure dominating set, secure domination polynomial.
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I. INTRODUCTION

y a graph G = (V,E), we mean a finite, undirected graph

with neither loops nor multiple edges. The order |V| and
the size |E| of G are denoted by n and m respectively. For graph
theoretic terminology we refer to Chartrand and Lesniak [3]. For
any vertex v €V, the open neighborhood of v is the set
N(v) = {u € V/uv € E} and the closed neighborhood of v is the
set N[v] = N(v) U {v}. For a set S < V, the open neighborhood
of S is N(S) = Uyes N(v) and the closed neighborhood of S is
N[S]=N(S)US. A set SCV is a dominating set of G, if
N[S] =V, or equivalently, every vertex in V — S is adjacent to at
least one vertex in S. A dominating set S of G is a secure
dominating set if for each u € V — S there exists v e N(wu) N S
such that (S — {v}) U {u} is a dominating set. In this case we
say that u is S- defended by v or v S-defends u. The secure

domination number y_ (&) is the minimum cardinality of a secure
dominating set. The concept secure dominating set is introduced
by Cockayne et al [4]. A simple path is a path in which all its
internal vertices have degree two, and the end vertices have
degree one and is denoted by P,. Let P, denotes the centipede
with 2n vertices obtained by appending a single pendant edge to
each vertex of a path P,,. For the definition of centipede, we refer
S. Alikhani and Y-H. Peng [2].
Definition 1.1[9].

Let G be a simple connected graph. Let D, (G, i) denote
the family of all secure dominating set of G with cardinality i and

let d,(Gi)=|D,(Gi)|. Then the secure domination
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polynomial D.(G, x) of G is defined as

D,(G,x) = ZLV;SG()G') dy(G,i)x', where y(G) is the secure
domination number of G.

As usual we use |x| for the largest integer less than or
equal to x and [x] for the smallest integer greater than or equal
to x. Also, we denote the set {1,2,...,n} by [n], throughout this
paper.

In the next section we study secure dominating sets and
secure domination polynomial of P; — {2n} , which is needed
for the study of secure dominating sets of centipedes.

II. SECURE DOMINATING SETS AND SECURE
DOMINATION POLYNOMIOAL OF P, — {2n}

Lemma 2.1
Foreveryn € N
) v, (P =n
i) y,(P,—{2n}) =n
iii) D,(P;, i) =@ifandonlyifi<nori>2n
iv) D,(P;, —{2n},i) =@ ifandonlyifi <nor
i>2n-—1.

Lemma 2.2

i) If D,(P;_1,i—1) # @ and D,(P;_,,i—2) =@, then
D,(Pi_y —{2n—-2},i—2) # 0.

ii) If D,(P;_1,i—1)# @ and D,(P;_; —{2n—2},i—
2) =0 ,thenD,(P;_,,i—2) # 0.

iii) If D,(P;_,—{2n—2},i—2)# @ and D,(P;_,,i—
2) # @, thenD,(P;_,,i— 1) # .

Proof:

i) Since D,(P;_q,i — 1) # @, by Lemma 2.1(iii),
n—-1<i—-1<2n-2.
>n—-2<i—-2<2n-3
Also n—2 <n—1. Therefore, by Lemma 2.1(iv),
D, (P;_, —{2n—-2},i—2) # 0.

ii) Since D,(P;_;,i—1) = @ , by Lemma 2.1(iii), n —
1<i—-1<2n-2.
=>n—-2<i—-2 Q)
Since D,(P;_; —{2n—2},i—2) =0, by Lemma
21(iv),i—2<n—-1ori—2>2n-3.
=i—-2<n-1 2)
From (1) and (2), we have i —2 =n — 2. By Lemma
2.1(iii), Dy(P;_5, i — 2) # O.
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i) Since D (P;,_,, i — 2) # @, by Lemma 2.1(iii),n — 2 < = n+<i 9)
i—2<2n—4. Since Dy(P;,_,,i — 2) # @, by Lemma 2.1(iii),
=>n-1<i—-1<2n-3 (3) n—2<i—-2<2n—-4.
Since D,(P;_,—{2n—2},i—2)# @, by Lemma =i—2<2n-4
21(v),n—1<i—-2<2n-3. —=i<2n-2 (10)
=>n<i—-1<2n-2 4 From (9) and (10),n+ 1 <i <2n-— 2.
From (3) and (4), we have (&) Supposen+1<i<2n-—2.
n—-1<i-1<2(n-1). Theni < 2n— 2.
By Lemma2.1(iii), Dg(P_q,i — 1) # 0. =i—-2<2n—4

Lemma 2.3 By Lemma 2.1(iii), D;(P;_,, i — 2) # O.

For every n > 3,

Sincen+1<i, n—1<i—-2. By Lemma 2.1(iv),
D,(P;_ —{2n—-2},i—-2) # 0.

D DulPryi=1) = 0 De(Proy — {20 -2} i-2) 0 since  D(Pj,—{2n-2},i-2)#0  and

) and DS(P,?_Z,L —-2)=g¢ifand onlyllfz =2n—1. D.(P'_,i—2) # . by Lemma 2.2(iii),

i) D(Pr_,i-1)#0,  DJ(P,_,i—2)0 and DP:_i—1) %0
D,(P;_; —{2n—2},i—2) = gifandonlyif i=n. syl '

iy Dy(P;_,i—1)#0, Dy(P;_;, —{2n—2},i—2)# @ Theorem2.4
and D, (P;_,,i — 2) # ¢ if and only if iy D,(P;_,i—1)#0, D,(P,_—{2n—2},i—2) #
n+1<i<2n-2. @ and D (P;_,,i — 2) = @, then

Proof: D,(P;, — {2n},i) = {/X é(; g)n 1 ll}_ 1)}

i i * 1 s\U'n—-1»

i) £l=_>)1 S<|nice_ 21)S£P2nr_11;12__ 1) # @ , by Lemma 2.1(iii), i) I D(Pyi—1) %0, D.(Pi-2)%0 and
—i—1<2n—2 D,(P;i_y —{2n—2},i—2) = @, then
—=i<?2n-1 (5) XU{ZTL—3,2n—2},
Since D,(P:_,, i — 2) = @, by Lemma 2.1(iii), D(P! — {2n},i) = Xu{zn-32n-1}
i—2<n-—20ri—2>2n-4. s\in ’ Xu{2n—-22n-1}
=i<nori>2n-—2. (6) /X €D,(P._,,i—2)
From (5) and (6), 2n —2 <i<2n—2. iy 1D,(Pi_,i—1)#0 D,(P,_,—{2n—2},i—-2) %
Hence i = 2n — 1. @ and D,(P;_,,i —2) # @, then
(&) Suppose i = 2n — 1. D. (P — {2n},))
Then i —2 =2n—3 > 2(n— 2). By Lemma 2.1(iii), s )’z, U {Zn,— 3,2n — 2}
D,(Pi_,i—2) = 0. ! ’ ’
Since i—1=2(n—1), by Lemma 2.1(ii), X u{2n—-3,2n-1j}
D,(P;_,i—1) % 0. X, u{2n—-2,2n -1}
Since i—2=29n-1)—1, by Lemma /X1 € Dy(Pr_p)i—2)
2.1(iv), Dy(Py_, — {2n —2},i — 2) # 0. U { X,u{2n—-2,2n-1} }

i) (=) Since Dy(P;_,,i—1) # @ , by Lemma 2.1(iii), /X, €D,(P;_y —{2n—2},i—2)
n-1<i—-1<2n-2.
o 0, T
Since D,(P,_; —{2n—2},i—2)=¢ , by Lemma n=2
I e A et 12,08} - 21,1 = 10,(F; i~ DI+ 2,71 2.
=i<n+1 (8) Proof:
From (7) and (8), i = n. It follows from Theorem_2.4.
(<) Suppose i =n. Theni—1=n— 1. Here we state recursive formula for the secure
By Lemma 2.1(iii), D,(P}_,,i — 1) # 0. domination polynomial of P;, — {2n}.
Similarly, we prove D,(P;,_,,i — 2) # @. Theorem 2.6
Sincei=n,i—-2=n—-2<n-1. For every n = 3,
By Lemma2.1(iv), D,(P;_, — {2n—2},i — 2) = @. D(P,, — {2n},x) = xD, (P}, x) + x*D (P _3, ).

i) (=) Since D(P,_,—{2n—2}i—2)=@ by FProof

Lemma2.1(iv)) n—1<i—-2<2n-3.
>n+1<i<2n-1

SECURE DOMINATING SETS AND SECURE
DOMINATION POLYNOMIALS OF CENTIPEDES

It follows from the definition of secure domination
polynomial and Theorem 2.5.

In this section, we investigate secure dominating sets and Lemma 3.1

secure domination polynomials of centipede.
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i)
i)
i)

Proof:

i)

i)

If D.(P;_,i—1) % @ and D,(P;_,,i—2) = @, then
D (P —{2n},i—1) £ 0.

If D,(P;_1,i—1) =0 and Dy(P;_,,i —2) # @, then
D.(P; —{2n},i—1) # 0.

If D.(P;_,i—1) # @ and D,(P;_,,i—2) # @, then
D (P —{2n},i—1) £ 0.

Since D,(P;,_q,i —2) = @, by Lemma 2.1 (iii),
i—2<n-1ori—2>2n-2.
=i—1<nori—1>2n-1.

By Lemma 2.1(iv), D,(P;, — {2n},i — 1) = 0.

Since D,(P;,_q,i — 2) # @, by Lemma 2.1(iii),
n—-1<i—-2<2n-2.

=n<i—-1<2n-1

By Lemma 2.1(iv), D,(P;, — {2n},i — 1) # 0.

Since D,(P;_;,i — 2) # @, by Lemma 2.1(iii) and (iv),
D,(P; —{2n},i—1) # 0.

Lemma 3.2

i)
i)

i)

Proof:

i)

i)

i)
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D(Pi—-1)#0, D(P.,i-2)=9¢ and
D,(P; —{2n},i— 1) = ¢ ifandonly if i = n.
D.(P_,,i-1) =0, D(P,,i—-2)#¢ and
D,(P;, —{2n},i— 1) # ¢ ifand only if i = 2n.

Dy(Pryi—1)# 8,  Dy(Ph 1, i=2)#0
D,(P; — {2n},i — 1) # ¢ if and only if
n+1<i<?2n-1

and

=) Since D,(P,_,i—1)#0 and
D,(P; — {2n},i — 1) = @ by Lemma 2.1(iii) and (iv),
n<iandi <n+1. Wehavei=n.

(&) Suppose i = n.

Theni —1 =n — 1. By Lemma 2.1(iii),
D,(P;_,,i—1) # @and D,(P; — {2n},i — 1) = 0.
Sincei=n,n—1=i—-1>1i-2. By Lemma 2.1(iii),
D,(P;_1,i—2) = 0.

(=) Since D,(P;_;,i—1) = @, by Lemma 2.1(iii),
i—l<n-1lori—1>2n-2.

=i>2n—-1 (11)
Since D (P; — {2n},i — 1) # @, by Lemma 2.1(iv),
n+1<i—-1<2n-1.

=i<2n

From (11) and (12), we have i = 2n.
(&) Suppose i = 2n.

Theni —1 = 2n — 1. By Lemma 2.1(iv),
D,(P; — {2n},i— 1) # 0.

Since i=2n, i—2=2n—-2. By Lemma 2.1(iii),
D, (Pi_y,i—2) # 0.

Since i=2n, i—-1=2n-1>2n—-2. By Lemma
2.1(iii), Dy(P;_4,i— 1) = 9.

(=) Since D,(P;_,,i—1) # @, by Lemma 2.1(iii),
n—-1<i—-1<2n-2.

=i<2n-1

Since D,(P;_q,i — 2) # @, by Lemma 2.1(iv),
n—-1<i—-2<2n-2.

(12)

(13)
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=n+1<i (14)
From (13) and (14), we haven +1 <i < 2n—1.

(=) Supposen+1<i<?2n-1.

Thenn < i — 1. By Lemma 2.1(iv),

D,(P; —{2n},i—1) # 0.

Since n+1<i, n—1<i-2. By Lemma 2.1(iii),
D(P;_y,i—2) # 0.

Sincei<2n-—1,i—1<2n— 2. By Lemma 2.1(iii),
D(P;_y,i—1) # Q.

Theorem 3.3
) If D(Pi,i—-1)#0 D(P.,i-2)=¢ and
D,(P;, — {2n},i — 1) = @, then
xu{2n-1},
DS(P;, i) = XU {Zn}
/X € DS(P;_l, i— 1)
i) If D,(P,,i-1)=0, D(P,,i—-2)#9® and
D,(P;, — {2n},i — 1) = @, then
D,(P:, i) = {X U {2n}/X € D,(P; — {2n},i — 1)}.
i) If D(P,_,,i—-1)#0, D(P,_,i—2)#9® and
D,(P; —{2n},i — 1) # @, then
x,u{2n—1},
Dy(Py, i) = X, u{2n}
/X1 € Dy(Py_y,i—1)
U{ X, u{2n} }
/XZ € DS(P:L - {Zn},L - 1)
i 123 4 5 6 7 8 9 10
P —1{2} |1
P; 21

008 12 6 1
P,—{8 000 12 16 7 1
000 16 32 24 8 1

Py

P.—{10} 00 0 O

Py

24 44 30 9 1

000 O 32 8 80 40 10 1

Tablel: d (P;, i) and d (P, — {2n}, i)

Theorem 3.4
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Foreveryn = 3,
|D,(P;, )| = |D, (P, — {2n},i — | + |D,(P;_y i — 1)
+ 2|DS(P:1—1' i— Z)I

Proof:

It follows from Theorem 3.3.
Theorem 3.5
For every n > 3,

Dy(Py, x) = xD,(P;, — {2n}, x) + xD,(P;_, x)
+ 2x*D (P} _,, X)

Proof:

It follows from the definition of secure domination
polynomial and Theorem 3.4.

Theorem 3.6
For every n>2, D.(P:—{2n},x) = x"(x +2)" *(x + 3)
and D,(P}, x) = x"(x + 2)".
Proof:

We shall prove both the equalities together by induction
onn.

Since D,(P; — {2n},x) = x*(x +2)*?(x + 3) = x*(x + 3)
and D,(P}, x) = x*(x + 2)%. We have the result for n = 2.
Now, suppose the result are true for all-natural numbers

less than n.

By Theorem 2.6 and induction hypothesis, we have:

DS(P:I - {Zn},x) = XDS(P:L—I'X) + XZDS(P;_Z,X)
=x(x™(x +2)" D) + x2(x" 2 (x + 2)"72)
=x"(x+2)"?(1+x+2)
=x™(x +2)"%(x +3)

Now, by Theorem 3.5 and induction hypothesis, we have:

D,(P;,x) = x(x"(x +2)" % (x + 3)) +x(x™ T (x +2)")
+2x5 (" (x + 2)"72)

=x"(x +2)" 2 (x(x+3)+ (x +2) +2)
=x"(x+2)"2(x? +4x + 4)
= x"(x + 2)"?(x + 2)?

=x"(x+2)"
Theorem 3.7
iy d,(P0) = 22”"'(:11), for every n € Nand
n<i<?2n.
i) d,(P; —{2n},0) = 2272 2("2) + (D)), for

n=2andn<i<2n-1.

Proof:
i) By Theorem 3.6,
Dy(P;,x) = x"(x+ 2)"
n

— Z (:) on—k,n+k

k=0
Thus, we have

d(P;,n+k) = 2"7*(7), for0 <k <n.

Equivalently d (P, i) = Zzn‘i(l.:‘n), forn <i<2n.
ii) By Theorem 2.5,

d,(P, —{2n}, i) =d,(P;_1,i— 1) +d(Py_y, i — 2)

— p2n-i-1 (n - 1) 4 p2n-i-2 (n - 2)
i—n i—n
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IV. CONCLUSION

This paper discusses and analyses the secure
dominating sets of centipede and secure domination
polynomials of centipede. Using recursive formula, we
constructed the polynomial

D.(P:,x) = 2.2 d, (P, i)x', which we call secure
domination polynomial of P, and obtain some
properties of this polynomial.
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