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Abstract: In most recent years, the quantity of 

malware has increased enormously, raising a 

significant security risk to financial 

organizations, businesses and individuals. In 

order to analyze and identify such malware 

effectively, we need to be able to generalize them 

into groups and define their corresponding 

families based on their behavior. In this paper, a 

novel Customized Convolutional Neural 

Network (CCNN)is efficiently proposed. This 

modifies the elemental form of structurally 

based design of the convolutional network in 

such a manner to recognize and classifies the 

malware images into different family. A Leaky 

Rectified Linear Unit (Leaky RELU)is 

incorporated in our architecture, which has the 

aspect of no zero slopes in negative direction. 

Therefore, it develops the pictures of 

productivity of 64x64x50. Along with this Kernel 

Percolate is introduced, it detect an image pixels 

with a value of 1 along the diagonals of the 

image. The experiment is conducted over 9339 

samples of the 25 families to classify malware 

pictures. The outcome of the experiment shows 

that, contrary to other CNN malware 

classification models, CCNN has been more than 

98.81% accurate. Therefore, the suggested 

CCNN model reflects in conceptual designs the 

most comprehensive of malware classification 

systems. 

 

Keywords: Malware classification, CNN, 

CCNN, Malware visualization, Deep Learning. 

  

I. INTRODUCTION 

The detection and analysis of malicious 

software (malware) is becoming increasingly 

complicated by a growing amount of malware 

samples freshly identified. There has therefore 

been an exponential increase of new malware 

versions recognized by safety firms over the years. 

This is an overwhelming amount of malware analyst 

data because they must extract relevant data from 

these very large data sets. The statistics page of 

Virus Total demonstrates that it is possible to 

achieve or even exceed one million files per day by 

freshly presented samples for analyses [1]. This 

volume of samples is a difficult job for 

cryptography. While attempts are being made to 

automate reverse engineering and malware analysis, 

detection and assessment processes for manual or 

heuristic purposes remain extremely prominent. The 

results not only improve in pure numbers, but also 

in diverse samples, generating distinct versions of a 

common software malware that uses polymorphic 

and metamorphic algorithms. This includes 

signature schemes for the correct detection, 

classification and analysis of malware. In addition, 

cryptography procedures are encumbered to 

measure up to millions of samples. 

Many machine learning systems were designed to 

solve issues of handling a big amount of malware 

samples. Previous works have actually tackled the 

issue of malware modeling [2].In addition to 

behavioral information, static code characteristics 

for statistical analysis were also used as information 

sources [3]. In addition, work is being done to 

combine static and dynamic methods 

[4].Nevertheless these methods are not widely used 

in the analytical malware, despite the growing 

popularity of neural network in machine learning 

apps that have led to performance improvements in 

many fields. However, attempts are being made in 

the region of implementation to implement new 

neural networks. Feed forward networks were 
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recently used to analyze malware code, for 

example [5]. 

Observations of different malware families 

conclude that malware belongs to one family 

have the same visual features and malware 

belongs to two different families have 

different visual features. Motivated by this 

observation we are introducing a novel 

approach for analyzing and classifying 

malware using image processing. In a broader 

perspective, a malware enact able can be 

characterized in the form of a binary string of 

zeros and ones. Image stretch provides more 

information about the assembly of malware. 

Furthermore, the various sections of the binary 

can be easily perceived when malware is 

viewed as an image where various subsections 

have a different texture.  

In our proposed methodology, there is no 

need for disassembly or execution since the 

method entirely works on raw bytes, thereby 

making it faster than both static analysis and 

dynamic analysis. And the structure of packed 

malware variants do not change after packing 

since the proposed method is able to find 

similarity among packed malware variants 

where static analysis approaches like control 

flow graph analysis fail. The Malware authors 

use similar obfuscation techniques when 

creating malware variants of non-Windows 

based Operating Systems Linux, Android and 

OS X. Therefore, the proposed method need 

not be re-developed for a particular Operating 

System while traditional static and dynamic 

analysis based techniques need to be re-

developed. 

In CCNN is asserted for the automatic 

extension of the visualizing features from the 

executing files and thereby accomplishes in 

the malware classification. Although the 

number of CNN methods is accomplished 

using the appropriate form of intended 

balanced form of data. While, the dataset of 

the malware image [18] is highly imbalanced 

in nature. While some malware families have 

variants, however others only have less 

number of variants. Consequently, CNN models 

previously well-known and trained might poorly 

accomplish in this existing scenario. Thereby, the 

current paper inspired by the above challenges, uses 

CCNN for unbalancing malware families. By using 

the standard evaluation metrics, extensive 

evaluation is rendered and accomplished on the 

dataset available publically, the Ma1IMG [18] 

comprising of 9339 samples of the 25 families. For 

Malware classification comparative analysis based 

on the image based machine learning technique. 

From the experimental results, it was demonstrated 

that the proposed CCNN is highest at 98.81% 

thereby highlighting its feasibility as an accurate 

form of classified system.  

The rest of the paper is organized as follows: the 

relevant research is presented in Section II. 

Additionally, the proposed CCNN model is 

conferred in Section III. While, learning algorithm 

of CCNN is explored and highlighted in Section IV. 

Experimental results and comparative assessment is 

given in Section V. Section VI concludes with 

future work. 

2. LITERATURE SURVEY: 

Hu et al [6] Design, implementation, and 

evaluation of a malware database management 

system known as SMIT, which is capable of 

effectively assessing malware based on function call 

diagrams, which is known to be less sensitive to the 

instructional obscurations frequently used to avoid 

detection of AV software by malware authors. Since 

every malware program is displayed as a graph, an 

issue in a graphic database is caused by the search 

for the comparable Malware in a specified Malware 

Sample. 

Jang et al [7] presented Current Bit Shred, a 

system to analyze and cluster large-scale malware 

resemblance and to automatically detect semantinal 

and intrafamily interactions within clusters. The 

main concept behind Bit Shred is to use feature 

hacking to decrease the large function spaces 

prevalent in malware analytics dramatically. 

Kolbitsch et al [8] Offer a new, effective and 

efficient malware detection strategy, and can 

therefore be used to substitute or supplement 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X
  

 

http://xisdxjxsu.asia                                           VOLUME 18 ISSUE 3                                  186-200 
 

traditional anti-virus host software. In a 

controlled setting our strategy first analyzes 

the malware program in order to create a 

behavioral model. These models describe the 

data flows between calls that are crucial to the 

malware's work and therefore simple obscure 

or polymorphic techniques cannot be evaded 

readily. 

Bayer et al [9] propose a scalable clustering 

strategy for identifying and grouping samples 

of malware with comparable behaviors. In 

order to get traces of malware programs, we 

first conduct dynamic analytical work. The 

tracks are then generalized into conducting 

profiles that more abstractly characterize the 

activity of a program. 

Santos et al [10] Propose to be used as a file 

signature for the detection of unknown 

Malware with a fake favorable proportion 

(ngrams, each substring with a bigger strings 

with set length n). We demonstrate that n-

grams can detect unknown malware 

effectively. 

Roberto et al [11] suggest a quick statistical 

malware detection tool to enhance the 

scalability of current malware collection and 

analysis methods. Given a vast set of binaries 

that may include both previously unrecognized 

malware and benign executables, McBoost 

decreases the time of evaluation by 

classifying, filtering and transferring only 

suspect binaries to a comprehensive binary 

analysis procedure for extracting signatures. 

Espoir et al [12] suggest a malware picture 

classification Convolutional Neural Network 

model that achieves 98% precision. The results 

of Microsoft's 2015 malwaredness 

classification competition winner who also 

used a convolutionary neural network strategy 

to obtain 99 percent precision by using three 

types of characteristics obtained from nearly 

half of a terabyte of malware samples did not, 

however, overcome using picture 

characteristics alone. 

Jiawei et al [13] Offers a new lightweight 

strategy in IoT environment for detecting malware 

DDos. First, we remove gray pictures converted 

from binaries on one channel and then use a 

lightweight convolutionary nervous network to 

classify families of IoT malware. 

Daniel et al [14] suggested is to obtain from 

disassembled binaries a single channel gray-scale 

picture sequence transformed from the malware. 

Then a two-bit configuration network (TBN) is used 

to detect IoT families of malware, which can encode 

weights of the two-bit network top. 

In [6], [7] described common static code based 

analysis method is a control flow graph (CFG) 

analysis. It does not work on packed/obfuscated 

malware because the control flow of packed 

malware discloses only the unpacking predictable 

and not the actual flow. And [8], [9] the malicious 

code conduct is highlighted by running the 

suspicious code which are executable of the 

malware in a virtual sandboxed environment for 

several proceedings. It is time-consuming since the 

malware has to be observed for several minutes. In 

[10], [11] presented Statistical and content analysis 

based techniques are based on a variety of 

techniques: n-grams, n-perms, hash-based 

techniques, and file structure based techniques. 

Though its valuation was accomplished on the 

clustering of an unpacked malware dataset, no 

malware samples were used for testing the accuracy 

of the system. For [12], [13], [14] described the 

utility of the techniques based on machine learning 

for addressing the issues pertaining to the detection 

of malware and augmentation of the classification. 

Hence these methods complex in nature for 

obfuscation malicious code that modifies the whole 

binary structure and the selection of scaling 

parameter is acute to the network training. So to 

overcome all above mentioned issues in existing 

system, there is a necessity to proposed new 

methodology to tackle those issues. 

 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X
  

 

http://xisdxjxsu.asia                                           VOLUME 18 ISSUE 3                                  186-200 
 

3. CUSTOMIZED CONVOLUTIONAL NEURAL 

NETWORK (CCNN): 

Convolutionary Neural Networks (CNN) in 

the present erais the most effectively based 

profound learning models for image 

classification. Biology science is the 

inspiration of the multi-story architectures of 

CNN. High accuracy and rapid growth in the 

research of CNN motivated us to use deep 

learning approach to classify the malware 

images into different families. Proposed 

Customized Convolutionary Neural Network 

(CCNN) modifies the basic form of 

structurally-based design of the 

convolutionary network in such a way that 

CCNN acknowledges and classifies malware 

pictures into distinct families and produces 

much improved results than prior 

methodologies for malware classification. 

CCNN Model optimizes the number of layers 

instead of placing any layer restrictions. In 

addition, a variety of filter sizes were used for 

intermediate convolutionary CCNN layers. 

 

 
 

Figure 1: Schematic Block diagram of 

proposed Classification of Malware Image 

System 

 

Figure 1. shows the schematic block 

diagram of the suggested scheme for malware 

classification using CCNN. An input malware 

picture is a size 64x64x1 gray scale image 

used for CCNN pre-processing. Here, the size 

of the convolution layer is further improved in 

addition to the activation functioning. In order 

to decrease the size of the output picture generated 

from the convolution layers, a stomp of two is made 

in max pooling. The picture will be flattened in the 

next step and transferred to the Multi-Layer 

Perceptron and a fully linked layer. The last stage is 

to use the soft max classifier to return the picture 

class probability for each class from 0 to 25. 

Multi-layered perceptron stimulated CNNs. A 

subclass of neural systems is determined between 

certain layers as the convents with compulsory 

accessibility models. Neural networks do not very 

well scale for complete picture without the input of 

anyone else. Typical neural systems usually lead to 

the problem of over fitting. In contrast, customized 

convolutional neural network abuses the locally-

based features of the given malware images, such as 

treating malware image pixels that are discerned 

nearby and inaccessible in an unexpected manner. 

The suggested technique is therefore used to 

classify the multiple malware pictures based on the 

characteristics of the picture. Figure 2, which 

achieved enhanced outcomes throughout the 

experimental assessment, shows the suggested 

CCNN architecture. Here, CCNN's layer perceptive 

perception is also displayed for malware image 

classification. 

 

 
 

Figure 2: Architecture of CCNN 

A) Convolution Layer 

As shown in Figure 1, the input of the CCNN is a 

malware gray scale image xw,h,d, wherein the width 

is determined by w, d is determined by d (d=1) and 

height with h of themalware image. Through this 

layer, invariant features of malware images are 

cultured hierarchically and automatically. Firstly 

convolution layer recognizes low-level features of 

an image to reserve spatial association between 

image pixels by exhausting minor patches of the 

image. It recognizes the local image characteristics 

from one layer and subsequently maps them to the 

featuring maps. Additionally, a 2 Dimensional 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X
  

 

http://xisdxjxsu.asia                                           VOLUME 18 ISSUE 3                                  186-200 
 

presentation of convolutionally layers is 

discerned in Figure 3, wherein the input 

malware image is a 64x64x1 matrix (width x 

height x depth) and filter of size 3x3x1 is 

mapped on it to convert given image to feature map.  

 

 

 
 

Figure 3: Feature map mirroring 

 

In figure 3, the first layer of convolution, 50 

filters of size 5x5x1 have been utilized. The 

CCNN model takes an input malware image of 

size 64×64×1 with a zero padding p=2. Filter 

solicitation is determined as the dot product 

calculation along with the input malware 

image. Here, the output volume is of size 

64×64×50 where w= h=64= ((64-5) +2*2)/1+1 

and depth d=50. Total numbers of neurons in 

this layer are 64×64×50=204800 neurons. 

Moreover, every 204800 neuron is associated 

to a locally based region of the kernel. On the 

next two Convolutional Layers, we applied 70 

convolution filters of 3x3x1 and striding it 

amongst an input image with a strider 1. 

Initially, these filters are assigned with random 

values and then apply these filters on training 

data-set. The next step is activation function. 

B) Leaky ReLU: 

Traditional CNN architecture uses Rectified 

Leaner Unit (ReLU) activation function for 

bringing non-linearity into the weights present 

in intermediate layers of CNN. While the 

architecture proposed by us uses the concept 

of Leaky ReLU which solves the dying ReLU 

problem, which states that when there is 

negative gradient involved, the ReLU 

activation function completely reduces it to 

zero, while the leaky ReLU does not do it, 

because it does not have zero slopes present in 

negative direction, as shown by the following 

equation (2). This function is utilized to mark a 

distinct identification of probable features. Hence, 

Leaky ReLU yields 64x64x50 productivity images. 

This productivity images needs to be sampled to 

decompress into its original size. Thus, the image is 

given to the pooling layer for sampling.  

 

C) Pooling Layer: 

After the convolution layer the input malware 

image is converted as an image stack. Next step is 

the implementation of Pooling Layer, this is how we 

shrink the image stack and this is pretty straight 

forward. To reduce the input’s spatial size, pooling 

is used. Pooling controls an over-fitting problem by 

reducing an image feature dimensions and 

calculations. Pooling builds the network invariant to 

trivial biases and alterations. Importantly, it assures 

to acquire a scale-invariant illustration of the 

malware image. The different types of pooling 

include the Max, Min and Average Pooling. In a 

proposed CCNN model, the max pooling is utilized. 

We start with the window size of 2x2 pixels. Pick a 

stride of 2 and walk your window in stride across a 

filtered image which is the output of earlier 

convolutional layer and for each window take 

maximum value. Thus, pooling layer generates an 

output image of size 32x32x50. A visualization of 

the pooling procedure is shown in Figure 4. 
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Figure 4: Visualization of Max Pooling 

  

Output images of Pooling layer goes out in 

the form of input image towards second 

convolutionally based layer. Into the second 

layer, 70 kernels have been applied of size 

3x3x1. All remaining parameters are the same 

as the first convolutional layer. The output of 

the second layer after applying the Leaky 

ReLU activation function is 64x64x70 and 

then max pooling for resampling the malware 

image. Repeat the same procedure for the third 

convolutional layer with 70 kernels of size 

3x3x1 and generated output volume of size 

64x64x70 images. Initially, all kernels are 

assigned a randomized value. In each epoch, 

kernel’s value is changed for extracting the 

malware image features. After sampling the 

image, it is passed to fully connected layer for 

reducing the neuron overlapping and error 

minimization.   

D) Fully Connected Layer: 

In this layer, neurons are associated with all 

activation of an earlier layer. Here, along with 

a bias offset simple matrix multiplication is 

accomplished. Moreover, neurons are 

whispered when two or more related neurons 

discerned same malware features frequently 

for ensuring established codependency or co-

adaption on all neurons that introduces the 

problem of over fitting. In our work, a dropout 

function is utilized in this kind of situation to 

eradicate such type of complexity by 

overlooking neurons random sets through the 

training phase. Drop Out function shuts down 

nodes randomly so that learning or pattern 

based updates can be prevented. Next 256 

dense layers along with soft max classifiers are used 

in proposed CCNN for classifying the malware 

images. 

E) Soft max classifiers: 

Soft max classifiers offer you the likelihood of 

each class label while loss of the hinge provides you 

the margin. As humans, it is much easier for us to 

interpret probabilities rather than marginal scores 

(such as loss of hinge and loss of squared hinge).In 

addition, for datasets such as Image Net, we often 

look at Convolutional Neural Networks ' rank-5 

precision (where we check to see if the ground-truth 

label for a specified input image is in the top-5 

expected labels returned by a network).For the 

classification of the malware images, the soft max 

classifier is opted into its corresponding families.  

Additionally, because of the primary randomness 

in weights, there must be change in the weights 

systematically and subsequently CCNN model is 

utilized. Remember that each k output neurons, 

which connects to all the neurons of the earlier layer 

indirectly relates to malware family. The number of 

output neurons must be noticed and must be 

equivalent to the number of malware families. 

F) CCNN Learning Algorithm: 

Step I: The MalIng dataset had malware images 

with distinct width and height. For proposed 

CCNN, we required a malware image of size 

64x64x1. So, pre-process malware image to get the 

required size of an input image. An input of the 

model is a grayscale image that is an executable 

represented as xw,h,d wherein h is determined as the 

height,w is denoted as width and d as the 

depth(d=1). Image initializing is also carried out 
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before feeding the input to CCNN system for 

smoothing and noise removal of an input 

image. 

Step II: The convolutional Layer 

Provided the input image asI(w × h), a 

(f1 × f2) kernel (filter) F and constant biasb, 

the convolution layer output is as described 

below: 

(𝐼 ∗ 𝐹)𝑖𝑗 = ∑ ∑ 𝐹𝑚,𝑛. 𝐼𝑖+𝑚,𝑗+𝑛

𝑓2−1

𝑛=0

𝑓1−1

𝑚=0

+ 𝑏            (1) 

 

Where 0 ≤ i ≤ w − f1 and 0 ≤ j ≤ h − f2 

Step III: Leaky Rely activation function is 

given by equation (2) and used on the 

convolution maps to map particular output to a 

particular input. 

f(x) = {0.01x  for x < 0x    for x => 0                

(2) 

x – The actual value of a pixel.  

Step IV: Pooling Layer 

Pick a stride usually 2 or 3 and walk your 

window in stride across the filtered image and 

for each window take maximum value, called 

as down sampling operation. Pool Layer 

produces a volume [w1×h1×d1] wherein the 

w1, h1, d1 are given by equation (3), (4), and 

(5): 

𝑤1 =
𝑤−𝑓

𝑠
+

1                                                                   (3) 

ℎ1 =
ℎ−𝑓

𝑠
+ 1                                                             

(4) 

𝑑1 =
𝑑                                                                      (5) 

 

Step V: Fully connected layer 

All the features in the end are 
concatenated into a single vector that is 
extracted from previous layers.  

Consider: The input to unit ai
l  (ith unit in 

layerl)Qi
l : The output of unitai

l . 
f(x): Activation function  

wij
l : weight from some unit 

ai
l ’s output to some other unit aj

l=1 

L: output layer, l: the hidden layer 

𝐸: the squared error function 

1) Forward Propagation: 

1. output of step I is used and thereby the 

inputs are calculated for the next layer: 

𝑃𝑖
𝑙 = ∑ 𝑤𝑗𝑖

𝑙−1𝑄𝑗
𝑙−1

𝑗

                                             (6) 

2. Calculate activations for the layer which 

has known input: 

𝑄𝑖
𝑙 =  𝑓(𝑥)+𝑄𝑖

𝑙                                              (7) 

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥)is calculated by equation 2. 

3. Repeat step 1 and 2 of forward 

propagations for the productivity layer. 

 

2) Backward Propagation: 

1. Calculation of errors at the output layer 

𝐿: 
𝜕𝐸

𝜕𝑄𝑖
𝐿 =

𝑑𝐸

𝑑𝑄𝑖
𝐿 𝑄𝐿                              (8) 

2. Update bias by calculating the partial 

derivative of the error pertaining to image input of 

neuron at 1𝑠𝑡 layer 𝑙 for which errors are known 

𝜕𝐸

𝜕𝑃𝑗
𝑙 = 𝑓(𝑃𝑗

𝑙) (
𝑑𝐸

𝑑𝑄𝑗
𝑙 )                             (9) 

𝑏𝑗 = 𝑏𝑗 − 𝑏𝑗−1

𝜕𝐸

𝜕𝑃𝑗
𝑙                    (10) 

3. Errors computation at the earlier layer by 

employing a partial derivative of error intended in 

step I: 

𝜕𝐸

𝜕𝑄𝑗
𝑙 = ∑ 𝑤𝑖𝑗

𝑙 (
𝑑𝐸

𝑑𝑃𝑗
𝑙+1)                               (11)  

 

4. Steps 2 and 3 are repeated of back 

propagation till partial derivatives of errors are 

recognized at entire layers accepting an input layer. 

5. Calculation of the gradient of the error: 

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑙 = 𝑄𝑖

𝑙 (
𝜕𝐸

𝜕𝑃𝑗
𝑙+1)                                                (12) 

Step VI: Repeat steps II to V till error become 

less than or equal to minimum error (Chosen by the 

programmer). 

Step VII: The trained model is ready after step 

VI. Use this model for the classification of the 

testing malware images. 
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Figure 5: process flow of our proposed methodology 

 

Once the kernel for the certain features is 

known, convolution operation extracts those 

certain features. In advance, neither the nature 

of an individual nor the total number of 

features is known to the CCNN. Henceforth, 

the convolution layer is not able to extract any 

specific feature. The convolution layer 

predicted the features in forward propagation 

and then back propagation attempts to precise 

those predictions sequentially. After 

completion of training, many filters are 

alleviated over error minimization and finally 

convolution extracts features which cannot prior 

determine. In the proposed CCNN model, 

anonymous features have been extracted from 9342 

malware over 3 convolution layers, first layer with 

50 filters and remaining two with 70 filters each. 

Furthermore, the precise nature of every feature can 

be discerned once the training ends. The following 

is presented in Figure 5. 

 

 

 
 

Figure 6: Visualization of Convolutional Layer during Testing 
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4. RESULT AND DISCUSSION: 

A) Dataset 

Natrajan[20] provided the MalIMg 

dataset[18], which contains 9339 grayscale 

images in total, divided into 25 different 

classes which are highly imbalanced. It 

contains some packed malware, packed with 

UPX packer such as VB. AT, Yuner. A, 

Malex.gen!J, Rbot!gen and Autorun. K. 

Among this dataset 80% data is used by 

CCNN for training, 10% for validating and 

remaining 10% for testing.  

B) simulations Result 

One of the primary things you want to 

prevent would be over fitting if you train a 

machine learning model. This is when your 

model fits well with the training data, but it 

can't generalize and make precise data 

predictions that it hasn't seen before. Data 

researchers use a method called cross-

validation to find out if their model is over 

fitting, where they divide their information 

into two components-the training set and the 

validation set. To train the model, the training 

set is used, while the validation set is only 

used to assess the output of the model. To 

certify training properly, for each epoch, the 

validation accuracy is discerned. 

The training accuracy is different from 

validation accuracy is shown in Figure 7 and 

how variation loss was optimally utilized is 

understood with the help of the graph as presented 

in Figure 8.  

 

 
 

Figure 7: Training Accuracy vs. Validation 

Accuracy 

 

 
 

Figure 8: Training Loss vs. Validation Loss 

C) Performance analysis:  

Sometimes accuracy can be misleading measures, 

thus, to select the finest model, so excessive 

evolutionary metrics have been approached by us: 

specificity, sensitivity, negative predictive value, 

precision, false positive and negative rate, recall, 

false discovery rate, and F1 score. 

 

Tab. 1: Result of Evaluation Metrics 

 

Customized Convolutional Neural 

Networks 

Sensitivity 0.950 

Specificity 0.998 

Precision 0.947 

Negative 

Predictive Value 

0.99 

F1 Score 0.941 

Recall 0.951 

False Positive 0.005 
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rate 

False Negative 

rate 

0.049 

False Discovery 

rate 

0.052 

 

The result of all these matrices on our 

testing dataset is shown in Table 1. High 

Recall asserts that the classes of testing 

malware data are recognized correctly. 

Moreover, precision indicates that high 

accuracy of CCNN model in detecting a class 

to have the corresponding malware images. 

Table 1 concludes that average of metrics 

sensitivity, specificity, precision, negative 

predictive values, recall and F1 score is greater 

than 0.9 thereby indicating that the proposed 

CCNN's results are more promising. On the 

other hand, the average of metrics false 

negative rate, false discovery rate, recall is less 

than 0.05, which shows the misclassification 

rate of CCNN model is very less. Figure 10 

shows the performance analysis of our 

proposed methodology. 

 

 
 

Figure 9: performance analysis of our 

proposed method 

1. Sensitivity: 

Sensitivity (S) is the number determining 

the true positive (TP) over the number of true 

positive plus the number of false negative 

(FN). 

𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                       (13) 

2. Specificity: 

Specificity (SF) is determined as the true 

negative (TN) over the number of true negative 

(TN) plus the number of false positive (FP). 

 

SF =
TN

TN + FP
                  (14) 

3. Precision: 

Precision (P) is determined as the number of true 

positive (TP) over the number of true positive (TP) 

plus the number of false positive (FP). 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                   (15) 

4. Negative predicted value:  

Negative predicted value (NP) is determined as 

the number of true negative (TN) over the number 

of true negative (TN) plus the number of false 

negative (FN). 

 

𝑁𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
             (16) 

5. False positive rate: 

False positive rate (FPR) is d determined as 

the number of false positive (FP) over the number 

of true positive (TP) plus the number of false 

negative (FN). 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑁
                               (17) 

6. False discovery rate: 

False discovery rate (FDR) is determined as the 

number of false positive (FP) over the number of 

true positive (TN) plus the number of false positive 

(FP). 

 

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
                     (18) 
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7. Recall: 

Recall (R) is determined as the number of 

true positive (TP) over the number of true 

positive (TP) plus the number of false 

negative(FN). 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                         (19) 

8. F1 Score: 

F1 score (F1) is determined as the number 

of true negative (TN) over the number of true 

negative (TN) plus the number of false 

positive(FP). 

 

𝑆𝐹 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                   (20) 

The FI score is determined as the weighted 

average of precision, defined as the following: 

𝐹1 = 2
𝑃. 𝑅

𝑃 + 𝑅
                  (21) 

 

At the same time, to illustrate the performance of 

malware classification we use confusion matrix.  

D) Comparison of proposed system with existing 

techniques: 

Experimental results are compared with CNN-

FADL [14], GIST-knn[15], CNN-SVM [16], GRU-

SVM[16], MLP-SVM[16], CNN-IDC [17] and  

CNNC[18] and wherein all these methods are used 

on the same dataset, MalIMG Dataset. The 

comparative results are shown in Table 3. From the 

table, it can be concluded that CCNN have the 

highest accuracy for malware classification. Figure 

10 shows the accuracy comparison for proposed 

with existing methodology. 

 

Tab. 2: Comparing experimental Result on MalIMG Dataset 

 

G

I

S

T

-

k

n

n 

CNN-

SVM 

GRU-

SVM 

MLP-

SVM 

CNN- 

FAD

L 

CN

N-

IDC 

CN

NC 

Propose

d 

methodo

logy  

CCNN 

9

8

% 

77.22

% 

84.92

% 

80.46

% 

98% 95.8

0% 

96% 98.81% 

 

Confusion matrix is a form of tabularized 

representation for pronouncing the 

performance of proposed classifiers, which is 

tested on the testing dataset for which the consistent 

true values are already determined.  

 

 
 

Fig. 10: Comparing accuracy on MalIMG Dataset 

 There are two main advantages of CCNN 
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methodology against the methodology of 

Natrajan [19]. Firstly, the proposed time for 

the classification is not disciplined depending 

on the training dataset size however it 

“memorizes” the training dataset. In 

significance, when a new malware is 

acknowledged CCNN goes through all training 

illustrations. Secondly, if a hacker knows that 

GIST mine features are grounded on the global 

structure of malware image then just with the 

help of rearranging various sections of the 

malware code, the detection method could be 

broken. In contrast, in our approach, by just 

reallocation technique for changing the malware 

code might not yield such undesired effects as 

customized convolutional networks are able to 

acquire features invariant to transformation. For the 

proposed model, the confusion matrix is shown in 

Figure 11 and Table 3. As observed in Table 3, only 

one major source of misclassification is Swizzor. 

gen!l is there, otherwise all malware are classified 

accurately.  

 

Table 3: Confusion Matrix 

 

 1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

2

3 

2

4 

2

5 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1

0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1

1 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1

2 

0 0 0 0 0 0 0 0 0 0 0 .

0

8 

0 .

7

5 

.

0

8 

0 0 0 0 .

0

9 

0 0 0 0 0 

1

3 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

1

4 

0 0 0 0 0 0 0 0 0 0 0 .

3

2 

0 .

0

7

5 

0

.

1

2 

0 0 0 0 0 0 0 0 0 0 

1

5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

9

4 

0 0 0 0 .

0

6 

0 0 0 0 0 

1

6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

1

7 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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1

8 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

1

9 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

2

0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

2

1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

2

2 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

2

3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

2

4 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

2

5 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

 
 

Figure 11: Confusion Matrix of CCNN malware classification model 

 

5.CONCLUSION AND FUTURE WORK: 

This paper presents a novel Customized 

Convolutional Neural Networks for 

classification of malware based on its 

visualization and recognition of gray-scale 

image. As far as we realize, finding patterns 

from the pixel material of malware described 

as image is the first approach to applying 

customized neural networks. And also, the 

malware filter is used based on convolutionary 

neural networks as well as it turned more 

efficaciously by using different convolution 

layers method. An experimental outcome 

demonstrates that the precision is 98.81 

percent based on our strategy. Moreover, 

CCCN is fully automatic, and researchers can use it 

directly to tackle their own issues of image 

classification, whether or not they have CNN 

knowledge. 

Even the malware programs belonging to the 

same family is having identical patterns in 

visualization as an image, but for the encrypted or 

compressed image, the visualization may be 

completely different. In such case, only CCNN is 

not reporting the exact classification result. The 

combination of the CNN with knn or SVM, may 

result in more promising results.  
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