
Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

Malware Classification Using Customized

Convolutional Neural Networks by Leaky

RELU Activated Function

Rupali Komatwar, Manesh Kokare

Abstract: In most recent years, the quantity of

malware has increased enormously, raising a

significant security risk to financial

organizations, businesses and individuals. In

order to analyze and identify such malware

effectively, we need to be able to generalize them

into groups and define their corresponding

families based on their behavior. In this paper, a

novel Customized Convolutional Neural

Network (CCNN)is efficiently proposed. This

modifies the elemental form of structurally

based design of the convolutional network in

such a manner to recognize and classifies the

malware images into different family. A Leaky

Rectified Linear Unit (Leaky RELU)is

incorporated in our architecture, which has the

aspect of no zero slopes in negative direction.

Therefore, it develops the pictures of

productivity of 64x64x50. Along with this Kernel

Percolate is introduced, it detect an image pixels

with a value of 1 along the diagonals of the

image. The experiment is conducted over 9339

samples of the 25 families to classify malware

pictures. The outcome of the experiment shows

that, contrary to other CNN malware

classification models, CCNN has been more than

98.81% accurate. Therefore, the suggested

CCNN model reflects in conceptual designs the

most comprehensive of malware classification

systems.

Keywords: Malware classification, CNN,

CCNN, Malware visualization, Deep Learning.

I. INTRODUCTION

The detection and analysis of malicious

software (malware) is becoming increasingly

complicated by a growing amount of malware

samples freshly identified. There has therefore

been an exponential increase of new malware

versions recognized by safety firms over the years.

This is an overwhelming amount of malware analyst

data because they must extract relevant data from

these very large data sets. The statistics page of

Virus Total demonstrates that it is possible to

achieve or even exceed one million files per day by

freshly presented samples for analyses [1]. This

volume of samples is a difficult job for

cryptography. While attempts are being made to

automate reverse engineering and malware analysis,

detection and assessment processes for manual or

heuristic purposes remain extremely prominent. The

results not only improve in pure numbers, but also

in diverse samples, generating distinct versions of a

common software malware that uses polymorphic

and metamorphic algorithms. This includes

signature schemes for the correct detection,

classification and analysis of malware. In addition,

cryptography procedures are encumbered to

measure up to millions of samples.

Many machine learning systems were designed to

solve issues of handling a big amount of malware

samples. Previous works have actually tackled the

issue of malware modeling [2].In addition to

behavioral information, static code characteristics

for statistical analysis were also used as information

sources [3]. In addition, work is being done to

combine static and dynamic methods

[4].Nevertheless these methods are not widely used

in the analytical malware, despite the growing

popularity of neural network in machine learning

apps that have led to performance improvements in

many fields. However, attempts are being made in

the region of implementation to implement new

neural networks. Feed forward networks were

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

recently used to analyze malware code, for

example [5].

Observations of different malware families

conclude that malware belongs to one family

have the same visual features and malware

belongs to two different families have

different visual features. Motivated by this

observation we are introducing a novel

approach for analyzing and classifying

malware using image processing. In a broader

perspective, a malware enact able can be

characterized in the form of a binary string of

zeros and ones. Image stretch provides more

information about the assembly of malware.

Furthermore, the various sections of the binary

can be easily perceived when malware is

viewed as an image where various subsections

have a different texture.

In our proposed methodology, there is no

need for disassembly or execution since the

method entirely works on raw bytes, thereby

making it faster than both static analysis and

dynamic analysis. And the structure of packed

malware variants do not change after packing

since the proposed method is able to find

similarity among packed malware variants

where static analysis approaches like control

flow graph analysis fail. The Malware authors

use similar obfuscation techniques when

creating malware variants of non-Windows

based Operating Systems Linux, Android and

OS X. Therefore, the proposed method need

not be re-developed for a particular Operating

System while traditional static and dynamic

analysis based techniques need to be re-

developed.

In CCNN is asserted for the automatic

extension of the visualizing features from the

executing files and thereby accomplishes in

the malware classification. Although the

number of CNN methods is accomplished

using the appropriate form of intended

balanced form of data. While, the dataset of

the malware image [18] is highly imbalanced

in nature. While some malware families have

variants, however others only have less

number of variants. Consequently, CNN models

previously well-known and trained might poorly

accomplish in this existing scenario. Thereby, the

current paper inspired by the above challenges, uses

CCNN for unbalancing malware families. By using

the standard evaluation metrics, extensive

evaluation is rendered and accomplished on the

dataset available publically, the Ma1IMG [18]

comprising of 9339 samples of the 25 families. For

Malware classification comparative analysis based

on the image based machine learning technique.

From the experimental results, it was demonstrated

that the proposed CCNN is highest at 98.81%

thereby highlighting its feasibility as an accurate

form of classified system.

The rest of the paper is organized as follows: the

relevant research is presented in Section II.

Additionally, the proposed CCNN model is

conferred in Section III. While, learning algorithm

of CCNN is explored and highlighted in Section IV.

Experimental results and comparative assessment is

given in Section V. Section VI concludes with

future work.

2. LITERATURE SURVEY:

Hu et al [6] Design, implementation, and

evaluation of a malware database management

system known as SMIT, which is capable of

effectively assessing malware based on function call

diagrams, which is known to be less sensitive to the

instructional obscurations frequently used to avoid

detection of AV software by malware authors. Since

every malware program is displayed as a graph, an

issue in a graphic database is caused by the search

for the comparable Malware in a specified Malware

Sample.

Jang et al [7] presented Current Bit Shred, a

system to analyze and cluster large-scale malware

resemblance and to automatically detect semantinal

and intrafamily interactions within clusters. The

main concept behind Bit Shred is to use feature

hacking to decrease the large function spaces

prevalent in malware analytics dramatically.

Kolbitsch et al [8] Offer a new, effective and

efficient malware detection strategy, and can

therefore be used to substitute or supplement

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

traditional anti-virus host software. In a

controlled setting our strategy first analyzes

the malware program in order to create a

behavioral model. These models describe the

data flows between calls that are crucial to the

malware's work and therefore simple obscure

or polymorphic techniques cannot be evaded

readily.

Bayer et al [9] propose a scalable clustering

strategy for identifying and grouping samples

of malware with comparable behaviors. In

order to get traces of malware programs, we

first conduct dynamic analytical work. The

tracks are then generalized into conducting

profiles that more abstractly characterize the

activity of a program.

Santos et al [10] Propose to be used as a file

signature for the detection of unknown

Malware with a fake favorable proportion

(ngrams, each substring with a bigger strings

with set length n). We demonstrate that n-

grams can detect unknown malware

effectively.

Roberto et al [11] suggest a quick statistical

malware detection tool to enhance the

scalability of current malware collection and

analysis methods. Given a vast set of binaries

that may include both previously unrecognized

malware and benign executables, McBoost

decreases the time of evaluation by

classifying, filtering and transferring only

suspect binaries to a comprehensive binary

analysis procedure for extracting signatures.

Espoir et al [12] suggest a malware picture

classification Convolutional Neural Network

model that achieves 98% precision. The results

of Microsoft's 2015 malwaredness

classification competition winner who also

used a convolutionary neural network strategy

to obtain 99 percent precision by using three

types of characteristics obtained from nearly

half of a terabyte of malware samples did not,

however, overcome using picture

characteristics alone.

Jiawei et al [13] Offers a new lightweight

strategy in IoT environment for detecting malware

DDos. First, we remove gray pictures converted

from binaries on one channel and then use a

lightweight convolutionary nervous network to

classify families of IoT malware.

Daniel et al [14] suggested is to obtain from

disassembled binaries a single channel gray-scale

picture sequence transformed from the malware.

Then a two-bit configuration network (TBN) is used

to detect IoT families of malware, which can encode

weights of the two-bit network top.

In [6], [7] described common static code based

analysis method is a control flow graph (CFG)

analysis. It does not work on packed/obfuscated

malware because the control flow of packed

malware discloses only the unpacking predictable

and not the actual flow. And [8], [9] the malicious

code conduct is highlighted by running the

suspicious code which are executable of the

malware in a virtual sandboxed environment for

several proceedings. It is time-consuming since the

malware has to be observed for several minutes. In

[10], [11] presented Statistical and content analysis

based techniques are based on a variety of

techniques: n-grams, n-perms, hash-based

techniques, and file structure based techniques.

Though its valuation was accomplished on the

clustering of an unpacked malware dataset, no

malware samples were used for testing the accuracy

of the system. For [12], [13], [14] described the

utility of the techniques based on machine learning

for addressing the issues pertaining to the detection

of malware and augmentation of the classification.

Hence these methods complex in nature for

obfuscation malicious code that modifies the whole

binary structure and the selection of scaling

parameter is acute to the network training. So to

overcome all above mentioned issues in existing

system, there is a necessity to proposed new

methodology to tackle those issues.

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

3. CUSTOMIZED CONVOLUTIONAL NEURAL

NETWORK (CCNN):

Convolutionary Neural Networks (CNN) in

the present erais the most effectively based

profound learning models for image

classification. Biology science is the

inspiration of the multi-story architectures of

CNN. High accuracy and rapid growth in the

research of CNN motivated us to use deep

learning approach to classify the malware

images into different families. Proposed

Customized Convolutionary Neural Network

(CCNN) modifies the basic form of

structurally-based design of the

convolutionary network in such a way that

CCNN acknowledges and classifies malware

pictures into distinct families and produces

much improved results than prior

methodologies for malware classification.

CCNN Model optimizes the number of layers

instead of placing any layer restrictions. In

addition, a variety of filter sizes were used for

intermediate convolutionary CCNN layers.

Figure 1: Schematic Block diagram of

proposed Classification of Malware Image

System

Figure 1. shows the schematic block

diagram of the suggested scheme for malware

classification using CCNN. An input malware

picture is a size 64x64x1 gray scale image

used for CCNN pre-processing. Here, the size

of the convolution layer is further improved in

addition to the activation functioning. In order

to decrease the size of the output picture generated

from the convolution layers, a stomp of two is made

in max pooling. The picture will be flattened in the

next step and transferred to the Multi-Layer

Perceptron and a fully linked layer. The last stage is

to use the soft max classifier to return the picture

class probability for each class from 0 to 25.

Multi-layered perceptron stimulated CNNs. A

subclass of neural systems is determined between

certain layers as the convents with compulsory

accessibility models. Neural networks do not very

well scale for complete picture without the input of

anyone else. Typical neural systems usually lead to

the problem of over fitting. In contrast, customized

convolutional neural network abuses the locally-

based features of the given malware images, such as

treating malware image pixels that are discerned

nearby and inaccessible in an unexpected manner.

The suggested technique is therefore used to

classify the multiple malware pictures based on the

characteristics of the picture. Figure 2, which

achieved enhanced outcomes throughout the

experimental assessment, shows the suggested

CCNN architecture. Here, CCNN's layer perceptive

perception is also displayed for malware image

classification.

Figure 2: Architecture of CCNN

A) Convolution Layer

As shown in Figure 1, the input of the CCNN is a

malware gray scale image xw,h,d, wherein the width

is determined by w, d is determined by d (d=1) and

height with h of themalware image. Through this

layer, invariant features of malware images are

cultured hierarchically and automatically. Firstly

convolution layer recognizes low-level features of

an image to reserve spatial association between

image pixels by exhausting minor patches of the

image. It recognizes the local image characteristics

from one layer and subsequently maps them to the

featuring maps. Additionally, a 2 Dimensional

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

presentation of convolutionally layers is

discerned in Figure 3, wherein the input

malware image is a 64x64x1 matrix (width x

height x depth) and filter of size 3x3x1 is

mapped on it to convert given image to feature map.

Figure 3: Feature map mirroring

In figure 3, the first layer of convolution, 50

filters of size 5x5x1 have been utilized. The

CCNN model takes an input malware image of

size 64×64×1 with a zero padding p=2. Filter

solicitation is determined as the dot product

calculation along with the input malware

image. Here, the output volume is of size

64×64×50 where w= h=64= ((64-5) +2*2)/1+1

and depth d=50. Total numbers of neurons in

this layer are 64×64×50=204800 neurons.

Moreover, every 204800 neuron is associated

to a locally based region of the kernel. On the

next two Convolutional Layers, we applied 70

convolution filters of 3x3x1 and striding it

amongst an input image with a strider 1.

Initially, these filters are assigned with random

values and then apply these filters on training

data-set. The next step is activation function.

B) Leaky ReLU:

Traditional CNN architecture uses Rectified

Leaner Unit (ReLU) activation function for

bringing non-linearity into the weights present

in intermediate layers of CNN. While the

architecture proposed by us uses the concept

of Leaky ReLU which solves the dying ReLU

problem, which states that when there is

negative gradient involved, the ReLU

activation function completely reduces it to

zero, while the leaky ReLU does not do it,

because it does not have zero slopes present in

negative direction, as shown by the following

equation (2). This function is utilized to mark a

distinct identification of probable features. Hence,

Leaky ReLU yields 64x64x50 productivity images.

This productivity images needs to be sampled to

decompress into its original size. Thus, the image is

given to the pooling layer for sampling.

C) Pooling Layer:

After the convolution layer the input malware

image is converted as an image stack. Next step is

the implementation of Pooling Layer, this is how we

shrink the image stack and this is pretty straight

forward. To reduce the input’s spatial size, pooling

is used. Pooling controls an over-fitting problem by

reducing an image feature dimensions and

calculations. Pooling builds the network invariant to

trivial biases and alterations. Importantly, it assures

to acquire a scale-invariant illustration of the

malware image. The different types of pooling

include the Max, Min and Average Pooling. In a

proposed CCNN model, the max pooling is utilized.

We start with the window size of 2x2 pixels. Pick a

stride of 2 and walk your window in stride across a

filtered image which is the output of earlier

convolutional layer and for each window take

maximum value. Thus, pooling layer generates an

output image of size 32x32x50. A visualization of

the pooling procedure is shown in Figure 4.

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

Figure 4: Visualization of Max Pooling

Output images of Pooling layer goes out in

the form of input image towards second

convolutionally based layer. Into the second

layer, 70 kernels have been applied of size

3x3x1. All remaining parameters are the same

as the first convolutional layer. The output of

the second layer after applying the Leaky

ReLU activation function is 64x64x70 and

then max pooling for resampling the malware

image. Repeat the same procedure for the third

convolutional layer with 70 kernels of size

3x3x1 and generated output volume of size

64x64x70 images. Initially, all kernels are

assigned a randomized value. In each epoch,

kernel’s value is changed for extracting the

malware image features. After sampling the

image, it is passed to fully connected layer for

reducing the neuron overlapping and error

minimization.

D) Fully Connected Layer:

In this layer, neurons are associated with all

activation of an earlier layer. Here, along with

a bias offset simple matrix multiplication is

accomplished. Moreover, neurons are

whispered when two or more related neurons

discerned same malware features frequently

for ensuring established codependency or co-

adaption on all neurons that introduces the

problem of over fitting. In our work, a dropout

function is utilized in this kind of situation to

eradicate such type of complexity by

overlooking neurons random sets through the

training phase. Drop Out function shuts down

nodes randomly so that learning or pattern

based updates can be prevented. Next 256

dense layers along with soft max classifiers are used

in proposed CCNN for classifying the malware

images.

E) Soft max classifiers:

Soft max classifiers offer you the likelihood of

each class label while loss of the hinge provides you

the margin. As humans, it is much easier for us to

interpret probabilities rather than marginal scores

(such as loss of hinge and loss of squared hinge).In

addition, for datasets such as Image Net, we often

look at Convolutional Neural Networks ' rank-5

precision (where we check to see if the ground-truth

label for a specified input image is in the top-5

expected labels returned by a network).For the

classification of the malware images, the soft max

classifier is opted into its corresponding families.

Additionally, because of the primary randomness

in weights, there must be change in the weights

systematically and subsequently CCNN model is

utilized. Remember that each k output neurons,

which connects to all the neurons of the earlier layer

indirectly relates to malware family. The number of

output neurons must be noticed and must be

equivalent to the number of malware families.

F) CCNN Learning Algorithm:

Step I: The MalIng dataset had malware images

with distinct width and height. For proposed

CCNN, we required a malware image of size

64x64x1. So, pre-process malware image to get the

required size of an input image. An input of the

model is a grayscale image that is an executable

represented as xw,h,d wherein h is determined as the

height,w is denoted as width and d as the

depth(d=1). Image initializing is also carried out

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

before feeding the input to CCNN system for

smoothing and noise removal of an input

image.

Step II: The convolutional Layer

Provided the input image asI(w × h), a

(f1 × f2) kernel (filter) F and constant biasb,

the convolution layer output is as described

below:

(𝐼 ∗ 𝐹)𝑖𝑗 = ∑ ∑ 𝐹𝑚,𝑛. 𝐼𝑖+𝑚,𝑗+𝑛

𝑓2−1

𝑛=0

𝑓1−1

𝑚=0

+ 𝑏 (1)

Where 0 ≤ i ≤ w − f1 and 0 ≤ j ≤ h − f2

Step III: Leaky Rely activation function is

given by equation (2) and used on the

convolution maps to map particular output to a

particular input.

f(x) = {0.01x for x < 0x for x => 0

(2)

x – The actual value of a pixel.

Step IV: Pooling Layer

Pick a stride usually 2 or 3 and walk your

window in stride across the filtered image and

for each window take maximum value, called

as down sampling operation. Pool Layer

produces a volume [w1×h1×d1] wherein the

w1, h1, d1 are given by equation (3), (4), and

(5):

𝑤1 =
𝑤−𝑓

𝑠
+

1 (3)

ℎ1 =
ℎ−𝑓

𝑠
+ 1

(4)

𝑑1 =
𝑑 (5)

Step V: Fully connected layer

All the features in the end are
concatenated into a single vector that is
extracted from previous layers.

Consider: The input to unit ai
l (ith unit in

layerl)Qi
l : The output of unitai

l .
f(x): Activation function

wij
l : weight from some unit

ai
l ’s output to some other unit aj

l=1

L: output layer, l: the hidden layer

𝐸: the squared error function

1) Forward Propagation:

1. output of step I is used and thereby the

inputs are calculated for the next layer:

𝑃𝑖
𝑙 = ∑ 𝑤𝑗𝑖

𝑙−1𝑄𝑗
𝑙−1

𝑗

 (6)

2. Calculate activations for the layer which

has known input:

𝑄𝑖
𝑙 = 𝑓(𝑥)+𝑄𝑖

𝑙 (7)

𝑤ℎ𝑒𝑟𝑒 𝑓(𝑥)is calculated by equation 2.

3. Repeat step 1 and 2 of forward

propagations for the productivity layer.

2) Backward Propagation:

1. Calculation of errors at the output layer

𝐿:
𝜕𝐸

𝜕𝑄𝑖
𝐿 =

𝑑𝐸

𝑑𝑄𝑖
𝐿 𝑄𝐿 (8)

2. Update bias by calculating the partial

derivative of the error pertaining to image input of

neuron at 1𝑠𝑡 layer 𝑙 for which errors are known

𝜕𝐸

𝜕𝑃𝑗
𝑙 = 𝑓(𝑃𝑗

𝑙) (
𝑑𝐸

𝑑𝑄𝑗
𝑙) (9)

𝑏𝑗 = 𝑏𝑗 − 𝑏𝑗−1

𝜕𝐸

𝜕𝑃𝑗
𝑙 (10)

3. Errors computation at the earlier layer by

employing a partial derivative of error intended in

step I:

𝜕𝐸

𝜕𝑄𝑗
𝑙 = ∑ 𝑤𝑖𝑗

𝑙 (
𝑑𝐸

𝑑𝑃𝑗
𝑙+1) (11)

4. Steps 2 and 3 are repeated of back

propagation till partial derivatives of errors are

recognized at entire layers accepting an input layer.

5. Calculation of the gradient of the error:

𝜕𝐸

𝜕𝑤𝑖𝑗
𝑙 = 𝑄𝑖

𝑙 (
𝜕𝐸

𝜕𝑃𝑗
𝑙+1) (12)

Step VI: Repeat steps II to V till error become

less than or equal to minimum error (Chosen by the

programmer).

Step VII: The trained model is ready after step

VI. Use this model for the classification of the

testing malware images.

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

Figure 5: process flow of our proposed methodology

Once the kernel for the certain features is

known, convolution operation extracts those

certain features. In advance, neither the nature

of an individual nor the total number of

features is known to the CCNN. Henceforth,

the convolution layer is not able to extract any

specific feature. The convolution layer

predicted the features in forward propagation

and then back propagation attempts to precise

those predictions sequentially. After

completion of training, many filters are

alleviated over error minimization and finally

convolution extracts features which cannot prior

determine. In the proposed CCNN model,

anonymous features have been extracted from 9342

malware over 3 convolution layers, first layer with

50 filters and remaining two with 70 filters each.

Furthermore, the precise nature of every feature can

be discerned once the training ends. The following

is presented in Figure 5.

Figure 6: Visualization of Convolutional Layer during Testing

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

4. RESULT AND DISCUSSION:

A) Dataset

Natrajan[20] provided the MalIMg

dataset[18], which contains 9339 grayscale

images in total, divided into 25 different

classes which are highly imbalanced. It

contains some packed malware, packed with

UPX packer such as VB. AT, Yuner. A,

Malex.gen!J, Rbot!gen and Autorun. K.

Among this dataset 80% data is used by

CCNN for training, 10% for validating and

remaining 10% for testing.

B) simulations Result

One of the primary things you want to

prevent would be over fitting if you train a

machine learning model. This is when your

model fits well with the training data, but it

can't generalize and make precise data

predictions that it hasn't seen before. Data

researchers use a method called cross-

validation to find out if their model is over

fitting, where they divide their information

into two components-the training set and the

validation set. To train the model, the training

set is used, while the validation set is only

used to assess the output of the model. To

certify training properly, for each epoch, the

validation accuracy is discerned.

The training accuracy is different from

validation accuracy is shown in Figure 7 and

how variation loss was optimally utilized is

understood with the help of the graph as presented

in Figure 8.

Figure 7: Training Accuracy vs. Validation

Accuracy

Figure 8: Training Loss vs. Validation Loss

C) Performance analysis:

Sometimes accuracy can be misleading measures,

thus, to select the finest model, so excessive

evolutionary metrics have been approached by us:

specificity, sensitivity, negative predictive value,

precision, false positive and negative rate, recall,

false discovery rate, and F1 score.

Tab. 1: Result of Evaluation Metrics

Customized Convolutional Neural

Networks

Sensitivity 0.950

Specificity 0.998

Precision 0.947

Negative

Predictive Value

0.99

F1 Score 0.941

Recall 0.951

False Positive 0.005

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

rate

False Negative

rate

0.049

False Discovery

rate

0.052

The result of all these matrices on our

testing dataset is shown in Table 1. High

Recall asserts that the classes of testing

malware data are recognized correctly.

Moreover, precision indicates that high

accuracy of CCNN model in detecting a class

to have the corresponding malware images.

Table 1 concludes that average of metrics

sensitivity, specificity, precision, negative

predictive values, recall and F1 score is greater

than 0.9 thereby indicating that the proposed

CCNN's results are more promising. On the

other hand, the average of metrics false

negative rate, false discovery rate, recall is less

than 0.05, which shows the misclassification

rate of CCNN model is very less. Figure 10

shows the performance analysis of our

proposed methodology.

Figure 9: performance analysis of our

proposed method

1. Sensitivity:

Sensitivity (S) is the number determining

the true positive (TP) over the number of true

positive plus the number of false negative

(FN).

𝑆 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13)

2. Specificity:

Specificity (SF) is determined as the true

negative (TN) over the number of true negative

(TN) plus the number of false positive (FP).

SF =
TN

TN + FP
 (14)

3. Precision:

Precision (P) is determined as the number of true

positive (TP) over the number of true positive (TP)

plus the number of false positive (FP).

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15)

4. Negative predicted value:

Negative predicted value (NP) is determined as

the number of true negative (TN) over the number

of true negative (TN) plus the number of false

negative (FN).

𝑁𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (16)

5. False positive rate:

False positive rate (FPR) is d determined as

the number of false positive (FP) over the number

of true positive (TP) plus the number of false

negative (FN).

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑁
 (17)

6. False discovery rate:

False discovery rate (FDR) is determined as the

number of false positive (FP) over the number of

true positive (TN) plus the number of false positive

(FP).

𝐹𝐷𝑅 =
𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 (18)

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

7. Recall:

Recall (R) is determined as the number of

true positive (TP) over the number of true

positive (TP) plus the number of false

negative(FN).

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (19)

8. F1 Score:

F1 score (F1) is determined as the number

of true negative (TN) over the number of true

negative (TN) plus the number of false

positive(FP).

𝑆𝐹 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (20)

The FI score is determined as the weighted

average of precision, defined as the following:

𝐹1 = 2
𝑃. 𝑅

𝑃 + 𝑅
 (21)

At the same time, to illustrate the performance of

malware classification we use confusion matrix.

D) Comparison of proposed system with existing

techniques:

Experimental results are compared with CNN-

FADL [14], GIST-knn[15], CNN-SVM [16], GRU-

SVM[16], MLP-SVM[16], CNN-IDC [17] and

CNNC[18] and wherein all these methods are used

on the same dataset, MalIMG Dataset. The

comparative results are shown in Table 3. From the

table, it can be concluded that CCNN have the

highest accuracy for malware classification. Figure

10 shows the accuracy comparison for proposed

with existing methodology.

Tab. 2: Comparing experimental Result on MalIMG Dataset

G

I

S

T

-

k

n

n

CNN-

SVM

GRU-

SVM

MLP-

SVM

CNN-

FAD

L

CN

N-

IDC

CN

NC

Propose

d

methodo

logy

CCNN

9

8

%

77.22

%

84.92

%

80.46

%

98% 95.8

0%

96% 98.81%

Confusion matrix is a form of tabularized

representation for pronouncing the

performance of proposed classifiers, which is

tested on the testing dataset for which the consistent

true values are already determined.

Fig. 10: Comparing accuracy on MalIMG Dataset

 There are two main advantages of CCNN

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

methodology against the methodology of

Natrajan [19]. Firstly, the proposed time for

the classification is not disciplined depending

on the training dataset size however it

“memorizes” the training dataset. In

significance, when a new malware is

acknowledged CCNN goes through all training

illustrations. Secondly, if a hacker knows that

GIST mine features are grounded on the global

structure of malware image then just with the

help of rearranging various sections of the

malware code, the detection method could be

broken. In contrast, in our approach, by just

reallocation technique for changing the malware

code might not yield such undesired effects as

customized convolutional networks are able to

acquire features invariant to transformation. For the

proposed model, the confusion matrix is shown in

Figure 11 and Table 3. As observed in Table 3, only

one major source of misclassification is Swizzor.

gen!l is there, otherwise all malware are classified

accurately.

Table 3: Confusion Matrix

 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

1 1 0

2 0 1 0

3 0 0 1 0

4 0 0 0 1 0

5 0 0 0 0 1 0

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

2

0 0 0 0 0 0 0 0 0 0 0 .

0

8

0 .

7

5

.

0

8

0 0 0 0 .

0

9

0 0 0 0 0

1

3

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1

4

0 0 0 0 0 0 0 0 0 0 0 .

3

2

0 .

0

7

5

0

.

1

2

0 0 0 0 0 0 0 0 0 0

1

5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

.

9

4

0 0 0 0 .

0

6

0 0 0 0 0

1

6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1

7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

1

8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1

9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

2

1

0 1 0 0 0 0

2

2

0 1 0 0 0

2

3

0 1 0 0

2

4

0 1 0

2

5

0 1

Figure 11: Confusion Matrix of CCNN malware classification model

5.CONCLUSION AND FUTURE WORK:

This paper presents a novel Customized

Convolutional Neural Networks for

classification of malware based on its

visualization and recognition of gray-scale

image. As far as we realize, finding patterns

from the pixel material of malware described

as image is the first approach to applying

customized neural networks. And also, the

malware filter is used based on convolutionary

neural networks as well as it turned more

efficaciously by using different convolution

layers method. An experimental outcome

demonstrates that the precision is 98.81

percent based on our strategy. Moreover,

CCCN is fully automatic, and researchers can use it

directly to tackle their own issues of image

classification, whether or not they have CNN

knowledge.

Even the malware programs belonging to the

same family is having identical patterns in

visualization as an image, but for the encrypted or

compressed image, the visualization may be

completely different. In such case, only CCNN is

not reporting the exact classification result. The

combination of the CNN with knn or SVM, may

result in more promising results.

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

REFERENCES

[1] Virus Total, (2015). File Statistics.

https://www.virustotal.com/en/statistics/,

Nov.

[2] Attaluri, S., McGhee, S and Stamp, M.

(2009). Profile Hidden Markov Models

and Metamorphic Virus Detection.

Journal in computer virology. 5(2), 151–

169.

[3] Schultz, M.G., Eskin, E., Zadok, E., and

Stolfo, S.J. (2001) Data Mining Methods

for Detection of New Malicious

Executables. in IEEE Symposium on

Security and Privacy.

[4] Kolosnjaji, B., Zarras, A., Lengyel, T.,

Webster, G., and Eckert, C. (2016).

Adaptive semantics-aware malware

classification in Detection of Intrusions

and Malware, and Vulnerability

Assessment. Springer. 419– 439.

[5] Saxe, Jand K. Berlin, (2015). Deep Neural

Network Based Malware Detection Using

Two Dimensional Binary Program

Features. arXiv preprint

arXiv:1508.03096.

[6] Hu, X., Chiueh, T and Shin, K.G. (2009).

Large-scale malware indexing using

function call graphs. in Proceedings of the

16th ACM conference on Computer and

communications security ACM. 611–620.

[7] Jang, J., Brumley, D and Venkataraman,

S. (2011). Bitshred: feature hashing

malware for scalable triage and semantic

analysis. in Proceedings of the 18th ACM

conference on Computer and

communications security. 309-320.

[8] Kolbitsch, C., Comparetti, P.M., Kruegel,

C., Kirda, E., Zhou, X and Wang, X.

(2009). Effective and efficient malware

detection at the end host. in Proceedings

of Usenix Security symposium. 351-398.

[9] Bayer, U., MilaniComparetti, P.,

Hlauschek, C., Kruegel, C and Kirda, E.

(2009). Scalable, behavior-based malware

clustering. in Proceedings of NDSS’09.

[10] Santos, Penya, Y., Devesa, J and Bringas,

P. (2009). N-grams-based file signatures for

malware detection. In Proceedings of the 11th

International Conference on Enterprise

Information Systems (ICEIS), Volume AIDSS.

317-320.

[11] Roberto Perdisci and Andrea Lanzi.

(2008). McBoost Boosting scalability in

malware collection and analysis using

statistical classification of executables.

Computer Security Applications. 301-310.

[12] Espoir K. Kabanga & Chang Hoon Kim.

(2018). Malware Images Classification Using

Convolutional Neural Network. in Journal of

computer and communications. 153-158.

[13] Jiawei Su, DaniloVasconcellos Vargas,

Sanjiva Prasad, Daniele Sgandurra,

YaokaiFeng, Kouichi Sakurai. (2018).

Lightweight Classification of IoT Malware

Basedon Image Recognition. IEEE

International Conference on Computer

Software & Applications. 664-669.

[14] Daniel Gibert, CarlesMateu, Jordi Planes,

Ramon Vicens. (2019). Using convolutional

neural networks for classification of malware

represented as images. Journal of Computer

Virology and Hacking Techniques, Springer.

15-28.

[15] Nataraj, L., Karthikeyan, S., Jacob, G., and

Manjunath, B.S. (2011). Malware images:

visualization and automatic classification. In

Proc. of the 8th International Symposium on

Visualization for Cyber Security, Viz Sec '1,

USA, ACM. 4(7), 1-4

[16] Abien Fred M. Agarap. (2019). Towards

Building an Intelligent Anti-Malware System:

A Deep Learning Approach using Support

Vector Machine (SVM) for Malware

Classification.

[17] Songqing Yue. (2017). Imbalanced

Malware Images Classification: a CNN based

Approach.

[18] http://old.vision.ece.ucsb.edu/spam/malim

g.shtml

[19] Claudio Guarnieri. (2010) Cuckoo

Sandbox..

[20] Retrieved

fromhttp://www.cuckoosandbox.org/.

http://xisdxjxsu.asia/
http://old.vision.ece.ucsb.edu/spam/malimg.shtml
http://old.vision.ece.ucsb.edu/spam/malimg.shtml
http://www.cuckoosandbox.org/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN : 1673-064X

http://xisdxjxsu.asia VOLUME 18 ISSUE 3 186-200

http://xisdxjxsu.asia/

