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Abstract- Let G = (V, E) be a connected graph.  Let 𝐺 = (𝑉, 𝐸) 
be any connected graph.  Let 𝑋 ⊆ 𝐸.  The set𝑋 is said to be an 

exact edge dominating set , if |𝑁(𝑒𝑖)⋂𝑋| = 1 and |𝑁(𝑒𝑗)⋂𝑋| ≤

1 for every 𝑒𝑖 ∈ 𝐸(𝐺) − 𝑋 and 𝑒𝑗 ∈ 𝑋.  An exact edge 

dominating set is denoted as ExED set.  The exact edge 

domination number γ
𝑒
′ (𝐺) of a graph equals the cardinality of a 

minimum exact edge dominating set.In this paper, the features of 

exact edge dominating sets in the given graphs are derived.  Also 

the bounds of size and diameter of the graphs are defined in 

terms of maximum degree ∆(G).  We prove that in a connected 

graph G with γ
𝑒
′ (𝐺) = 𝑙.  Then 2𝑙 ≤ 𝑚 ≤ 2𝑙(∆(G) + 1). 

 

Index Terms- Exact dominating set, exact edge dominating set, 

wounded spider, corona graph 

 

I. INTRODUCTION 

or standard notations we do not introduce here, the reader is always 

referred to the introductory chapter of [3]. Domination in graphs has 

been studied extensively in recent years. The book by Haynes, 

Hedetniemi, and Slater [4] is entirely devoted to this area.   

Let G = (V, E) be a simple , finite , connected and undirected graph.  

The exact domination in graphs concept was introduced by Anto 

Kinsley[1]. The order and size of G are dentoed by n and m respectively.  

For basic graph theoretic terminology we refer to G. Chartrand [3].  A 

set of vertices S⊆V is called a dominating set of G if every vertex of 𝐺is 

dominated by at least one member of S.  Equivalently a dominating set 

is efficient if the distance between any two vertices in S is at least three, 

that is S is a packing. Two edges in a graph are independent if they are 

not adjacent in G.  A set of pairwise independent edges of G is called a 

matching in G.  While a matching of maximum cardinality is a 

maximum matching.  If M is a matching in a graph G with the 

propertythat every vertex of G is incident with an edge of M, then M is a 

perfect matching in G.  Clearly if G has a perfect matching M, then G 

has even order and <M> is a 1-regular spanning subgraph of G.The 

corona of two graphs G1, and G2 is the graph G = G1 ⊙G2formed from 

one copy of G1 and |V(G1)| number of copies of G2 where the ith vertex 

of G1 is adjacent to every vertex in the ith copy of G2 for 1 ≤ i ≤ |v(G1)|.   
A graph G is said to be a wounded spider formed by subdividing at most 

t – 1 of the edges of a star K1,t for t ≥ 0.  The concept of edge 

domination was introduced by Mitchell and Hetetniemi[5].  The 

required basic definitions are studied from Haynes T. W, et all. [6].  This 

paper is fascinated on exact edge domination in graphs.  Throughout this 

paper, Pn, Cn, and Knwill stand for the path, cycle and complete graph 

with order n respectively.  

II. EXACT EDGE DOMINATING SET 

Definition 2.1 

     Let 𝐺 = (𝑉, 𝐸) be any connected graph.  Let 𝑋 ⊆ 𝐸.  The 

set𝑋 is said to be an exact edge dominating set , if |𝑁(𝑒𝑖)⋂𝑋| =
1 and |𝑁(𝑒𝑗)⋂𝑋| ≤ 1 for every 𝑒𝑖 ∈ 𝐸(𝐺) − 𝑋 and 𝑒𝑗 ∈ 𝑋.  An 

exact edge dominating set is denoted as ExED set. 

 

Definition 2.2 

The exact edge domination number γ
𝑒
′ (𝐺) of a graph equals the 

cardinality of a minimum exact edge dominating set. 

 

Example 2.3 

   Consider the graph G,  

 
Figure 2.1:  A graph G for exact edge dominating set 

 

In Figure [2.1], The set X ={e1, e5, e10, e11} forms ExED set.  

Also the set {e1, e6, e10, e11} is an ExED set.  But the set {e2, e7, 

e11} is a edge dominating, but not a ExED set.   

The parameter γ
𝑒
′ (𝐺) cannot be computed for some graphs.  For 

example, cycle C5 not having ExED set. 

 

Example 2.4 

    Consider the graph G′ 

                           
 

       Figure 2.2.  A graph G′ not having ExED set 

 

F 
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In Figure [2.2], Let 𝑋′ = {e1 , e2}, then |𝑁(𝑒4)⋂𝑋
′|= 0 .  Then X′ 

is not an ExED set.  Suppose 𝑋′ = {e1 , e2, e4},  then N(e5)⋂𝑋′ = 

{e1, e4} and N(e3)⋂𝑋′ = {e2, e4}.  That is |𝑁(𝑒5)⋂𝑋
′| =

|𝑁(𝑒3)⋂𝑋
′| = 2 ≠ 1 where 𝑒5, 𝑒3 ∈ 𝑉 − 𝑋'.  Then X′ is not an 

ExED set. 

In figure 1, Add an edge e12 = v7v9 in G, then G has no ExED set. 

 

Theorem 2.5 

Let G be any connected graph and with the condition deg(ei) = 1, 

deg(ej) > 1 and eiand ejare adjacent edges in G.  If  X is an ExED 

set and ei, ej∈ 𝑋, then X is not aExED set. 

Proof 

Let X be an ExED set and ei, ej∈ 𝑋.  Then we have to prove that 

X is not a minimum ExED set, then either X – {ei} or X – {ej} is 

not an ExED set.  The set X – {ej} is not an ExED set, since 

deg(ej) > 1 and by definition of ExED set the edges of the set 

N(ej) – {ei} are not dominated by any other edges in X.  In this 

case X is not a minimum ExED set.  But the set X – {ei} is an 

ExED set.  That is all the edges of {E(G)∪{ei}} – X are 

dominated by any other edges in X. 

 

Theorem 2.6 

 Let G be any connected graph order n ≥ 4 and X be a minimum 

ExED set with |𝑁(𝑒𝑖)⋂𝑋| = 1 for all 𝑒𝑖 ∈ 𝑋, then deg(ei) ≠1. 

Proof 

 Suppose deg(ei) = 1 and N(ei) ⋂ X={ej} for i≠j where ei , ej∈ 𝑋.  

Since deg(ei) = 1, assume that u and v be two vertices incident 

with the edge ei, then deg(u) + deg(v) – 2 = 1          which implies 

that,deg(u) + deg(v) = 3.  Then either deg(u) = 2, deg(v) = 1 or 

deg(u) = 1, deg(v) = 2.  Take deg(u) = 1, deg(v) = 2, which 

means that v is the support vertex of the vertex u.  let w∈ N(V), 

then ei= uv and ej= vw.  By above theorem X – {ei} is an ExED 

set.  Then X is not a minimum ExED set in G.  Hence deg(ei) ≠1. 

 

Remark 2.7 

   Let X be a ExED set with 𝑁(𝑒𝑖)⋂𝑋 = {𝑒𝑗} where𝑒𝑖, 𝑒𝑗 ∈ 𝑋 and 

ube a vertex incident with both 𝑒𝑖 and 𝑒𝑗.  Then deg(u) = 2. 
Remark 2.8 

By the abovetheorems[2.5], [2.6], If S is a minimum ExED set, 

with deg(ei) = 1 , for all  ei∈X, then |𝑁(𝑒𝑖)⋂𝑋| = 0. 
 

Theorem 2.9 

 Let G be any connected graph and X be a ExED set in G.  Let X 

be the set defined as the number of vertices incident with the 

edges in X.  If |𝑁(𝑒𝑖)⋂𝑋| = 0for all 𝑒𝑖 ∈ 𝑋, then 𝑋 contains even 

number of vertices. 

Proof 

  By our assumption, 𝑁(𝑒𝑖)⋂𝑋 = ∅, for all 𝑒𝑖 ∈ 𝑋.  Every edge is 

incident with two vertices.  Let |X| = k.  The k edges are incident 

with 2k vertices.  Hence X contains even number of vertices. 

Theorem 2.10 

If X is a ExED set in G⊙H with γ
𝑒
′ (𝐺 ⊙ 𝐻) = 1 if and only if 

G≅K2 and H≅K1 or G≅K1 and H≅K2. 

 

Remark 2.11 

Let G and H be a connected graph of order n1 and n2 

respectivley.  Suppose n1> 2 or n2> 2, then G⊙H has no ExED 

set.   

Theorem 2.12 

  Let G wounded spider graph.  Then γ
𝑒
′ (𝐺) = 2, for s = 1 and for 

2 ≤ s ≤ t – 1, G does not have an ExED set.    

 

Theorem 2.13 

The Complete graph Kn, n> 3,  has no ExED set. 

Proof 

Suppose X be an ExED set in Kn.  Suppose |X| = 2 and e1, e2∈ X. 

Then by definition |N(e1) ∩ X| ≤ 1 and |N(e2) ∩ X| ≤ 1, for e1, e2∈ 
X.  Suppose |N(e1) ∩ X| = 1, then obviously N(e1) ∩ X = {e2}.  

Take a1a2 = e1 and a2a3 = e2.  But for n ≥ 4, deg(a2) ≥ 3, by 

theorem [2.6], remark[2.7], is a contradiction.  Suppose |N(e1) ∩ 

X| = 0 and |N(e2) ∩ X| = 0.  Take a1a2 = e1 and a3a4 = e2.  In Kn, a3 

is adjacent to a1 and a2, similarly a4 is adjacent to a1 and a2.  

Then there exits an edge el such that |N(el) ∩ X| = 2, for el∈E(G) 

– X, which is a contradicts our assumption that X is an ExED set. 

For |X| > 2, we get the above similar cases.  Hence we can 

conclude that, Kn has no ExED set.    

 

Remark 2.14 

For Kn, n = 3, then  γ
𝑒
′ (𝐾𝑛) = 1. 

Remark 2.15 

For Kn, n ≤ 2, then Kn has no ExED set. 

Theorem 2.16 

The Wheel graph Wn, n ≥ 4 has no ExED set. 

 

Theorem 2.17 

Let 𝑋 be an ExED in 𝐺 with γ
𝑒
′ (𝐺) = 𝑙 and 𝑋𝑒

′ (G) ={x, y∈V(G) / 

xy = ei, for all ei∈X  where 1 ≤ i ≤ l}.  Then we have the 

following: 

(i).  when l is even, 〈𝑋𝑒
′ (𝐺)〉 =

{
 

 
𝑙𝑃2

(
𝑙

2
) 𝑃3

(2𝑠)𝑃2 ∪ (
𝑙−2𝑠

2
) 𝑃3

, where 1 ≤

𝑠 ≤ (
𝑙−2

2
) 

(ii). when l is odd 〈𝑋𝑒
′ (𝐺)〉 = {

𝑙𝑃2

(2𝑡 + 1)𝑃2 ∪ (
𝑙−(2𝑡+1)

2
)𝑃3

 , 

where 0 ≤ 𝑡 ≤ (
𝑙−3

2
). 

 

Remark 2.18 

By the theorem[2.17] we have 
3𝑙

2
≤ |𝑋𝑒

′ (𝐺)| ≤ 2𝑙, when l is even 

and 
3𝑙+1

2
≤ |𝑋𝑒

′ (𝐺)| ≤ 2𝑙, when l is odd. 

When l is even, for the upper bound of |𝑋𝑒
′ (𝐺)|, we have 

〈𝑋𝑒
′ (𝐺)〉 =  𝑙𝑃2.  Then |𝑋𝑒

′ (𝐺)| = 2𝑙.  And for lower bound of 

|𝑋𝑒
′ (𝐺)| occurs when 〈𝑋𝑒

′ (𝐺)〉 =  (
𝑙

2
)𝑃3.  Then |𝑋𝑒

′ (𝐺)| =
3𝑙

2
.                  

Consider  〈𝑋𝑒
′ (𝐺)〉 = (2𝑠)𝑃2 ∪ (

𝑙−2𝑠

2
)𝑃3, where 1 ≤ 𝑠 ≤ (

𝑙−2

2
).                                                     

When s = 1, then  |𝑋𝑒
′ (𝐺)| = (2 × 1)2 + 3 (

𝑙−1

2
) =

8+3𝑙−6

2
=

3𝑙+2

2
.   When s = 

𝑙−2

2
, then  |𝑋𝑒

′ (𝐺)| = (2 (
𝑙−2

2
)) 2 +

3(
𝑙−2(

𝑙−2

2
)

2
) = 2𝑙 − 4 + 3 = 2𝑙 − 1.Therefore 

3𝑙+2

2
≤ |𝑋𝑒

′ (𝐺)| ≤

2𝑙 − 1, for 1 ≤ 𝑠 ≤ (
𝑙−2

2
). 
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Similarly, when l is odd, the upper bound of |𝑋𝑒
′ (𝐺)|occurs, 

when 〈𝑋𝑒
′ (𝐺)〉 =  𝑙𝑃2.And for the lower bound of |𝑋𝑒

′ (𝐺)|, 

consider 〈𝑋𝑒
′ (𝐺)〉 =  (2𝑡 + 1)𝑃2 ∪ (

𝑙−(2𝑡+1)

2
)𝑃3, where  0 ≤ 𝑡 ≤

(
𝑙−3

2
).When t = 0 , |𝑋𝑒

′ (𝐺)| = 2 + (
𝑙−1

2
) 3 =

4+(𝑙−1)3

2
=

3𝑙+1

2
.                                                                       

When t> 0, we have |𝑋𝑒
′ (𝐺)| >

3𝑙+1

2
.  Therefore, 

3𝑙+1

2
≤

|𝑋𝑒
′ (𝐺)| ≤ 2𝑙. 

III. BOUNDS ON SIZE AND DIAMETER OF THE 

GRAPH G WITH RESPECT TO MAXIMUM 

DEGREE IN G 

Theorem 3.1 

Let m be the size  and ∆(G) be the maximum degree in G with 

γ
𝑒
′ (𝐺) = 𝑙.  Then 2𝑙 ≤ 𝑚 ≤ 2𝑙(∆(G) + 1). 

Proof 

 Let X be an ExED set in G with γ
𝑒
′ (𝐺) = 𝑙 .  Let X = 

{𝑒𝑙1 , 𝑒𝑙2 ,….,𝑒𝑙𝑙} be an ExED set and SX = {a1, a2, …., a2l} be the 

set of vertices incident with the edges of X.  For upper bound of 

m, consider |N(ej) ∩ X| = 0, for all ej ∈ X. Then deg(ai) ≤ ∆(𝐺), 
for 1 < 𝑖 ≤ 2𝑙.  Suppose deg(ai) = ∆(G), for all ai, then ∆(G) 

number of vertices incident with each ai. Take  ai𝑏𝑖𝑗  = 𝑒𝑖𝑗 , where 

𝑒𝑖𝑗∈ E(G) – X and 1 ≤  j ≤ ∆(G).  Since G is connected, then Xi= 

{𝑒𝑖𝑗/ai𝑏𝑖𝑗  = 𝑒𝑖𝑗 , where 1 ≤  j ≤ ∆(G)} for 1 < 𝑖 ≤ 2𝑙 is the set 

which consists the edges in E(G) – X.  Then m = |𝑋| +  |𝑋𝑖| = l + 

∆(𝐺)  + ∆(𝐺)  + ⋯… + ∆(𝐺)⏟                    
2𝑙 𝑡𝑖𝑚𝑒𝑠 

 = l + 2l∆(G) = l(1+2∆(G)).  

Suppose deg(ai) <∆(G), then m <l(1+2∆(G)). Hence 𝑚 ≤
2𝑙(∆(G) + 1)for deg(ai) ≤ ∆(G). 
For lower bound of m, consider |N(𝑒𝑙𝑎) ∩ X| ≤ 1, for all 𝑒𝑙𝑎∈ X.  

Then we have following two cases. 

Case (i). When l is odd with N(𝑒𝑙𝑘) ∩ X  = {𝑒𝑙𝑘+1}, where k = 2r 

+ 1, for r = 0, 1, 2, …, 
𝑙−3

2
 and 𝑁(𝑒𝑙𝑙) ∩ X  = ∅ with respect to X.  

Take deg(ai) = 2, since G is connected,  m = 4 [(
𝑙−3

2
) + 1] + 3 =

2(𝑙 − 1) + 3 = 2𝑙 + 1.  When deg(ai) > 2, we get m>2𝑙 + 1. 

Then we can conclude that m ≥ 2l + 1, when l is odd with |N(𝑒𝑙𝑎) 

∩ X| ≤ 1, for all 𝑒𝑙𝑎∈ X. 

Case (ii).  When l is even with deg(ai) = 2 with |N(𝑒𝑙𝑎) ∩ X| = 1, 

then by the above case we have m = 
4𝑙

2
= 2𝑙.  When deg(ai) > 2, 

we get m>2𝑙. Therefore, deg(ai) ≥ 2, we get m ≥ 2𝑙.  Hence by 

above all the case, 2𝑙 ≤ 𝑚 ≤ 2𝑙(∆(𝐺) + 1). 
Theorem 3.2 

Let G be a connected graph with γ
𝑒
′ (𝐺) = 𝑙, then diam(G) ≤ 3l. 

Proof  

 Let X be an ExED set in G with γ
𝑒
′ (𝐺) = 𝑙.  By defintion of an 

ExED set we have |𝑁(𝑒𝑖)⋂𝑋| = 1 and |𝑁(𝑒𝑗)⋂𝑋| ≤ 1 for every 

𝑒𝑖 ∈ 𝐸(𝐺) − 𝑋 and 𝑒𝑗 ∈ 𝑋.  Let us now consider the case 

|𝑁(𝑒𝑗)⋂𝑋| = 0 for all 𝑒𝑗 ∈ 𝑋.  Let SX = {u1, u2, u3, ….., u2l} be 

the set of vertices which are incident with edges of X.  For upper 

bound of diam(G), let us now consider the diametrical path d 

which consists of all the l number of edges of X.  Then e(ua) ≤ 3l 

– 2, for all ua∈ SXand e(ub) ≤ 3l, for all ub∈V(G) - SX.  Therefore, 

max{e(ux)} = 3l, which means that diam(G) = 3l, for every 

ux∈V(G).  Suppose that |𝑁(𝑒𝑗)⋂𝑋|≤ 1,  for all 𝑒𝑗 ∈ 𝑋.  Then for 

lower bound of diameter of G, we have the following two cases. 

Case(i). When l is even with |𝑁(𝑒𝑗)⋂𝑋| = 1,  for all 𝑒𝑗 ∈ 𝑋, then 

e(ua) ≤ 2l – 1, for all ua∈ SXand e(ub) ≤ 2l, for all ub∈V(G) - SX.  

Therefore, max{e(ux)} = 2l, which means that diam(G) = 2l, for 

every ux∈V(G) in this case. 

Case(ii). When l is odd with |𝑁(𝑒𝑗)⋂𝑋| ≤ 1,  for all 𝑒𝑗 ∈ 𝑋, then 

e(ua) ≤ 2l , for all ua∈ SXand e(ub) ≤ 2l + 1, for all ub ∈V(G) - SX.  

Therefore in this case, max{e(ux)} = 2l + 1, which means that 

diam(G) = 2l + 1, for every ux∈V(G). 

From all the above cases max{e(ux)} = 3l, for ux ∈V(G), that is 

diam(G) = 3l, for  ux ∈V(G) with |𝑁(𝑒𝑗)⋂𝑋| = 0 for all 𝑒𝑗 ∈ 𝑋 .  

If atmost l – 1 number of edges lie on the diametrical path d, then 

diam(G) < 3l.  Therefore, we can conclude that diam(G) ≤ 3l, for 

every ux ∈V(G). 

Theorem 3.3 

 Let X be a ExED set in a connected graph G with γ
𝑒
′ (𝐺) = 𝑙,  

and l is even where 𝑙 ≥ 4 and ∆(G) be the maximum degree of G, 

then diam(G) ≥ 8, for ∆(G) ≥ 
𝑙

2
 and diam(G) ≥ 10, for ∆(G) <

𝑙

2
. 

Proof 

 Let X be a ExED set in G with γ
𝑒
′ (𝐺) = 𝑙 and ∆(G) be the 

maximum degree of G.  For lower bound of diameter of G, let us 

consider |𝑁(𝑒𝑗1)⋂𝑋| = 1, for all 𝑒𝑗1 ∈ 𝑋.  Take N(𝑒𝑗1) ⋂ X = 

{𝑒𝑖1} for 𝑒𝑖1 ∈ 𝑋.  let ua be a vertex in G such that ua𝑢𝑏1 = 𝑒𝑙1 , 

such that deg(ua) = ∆(G) ; where 𝑒𝑙1is the edge incident with the 

vertices 𝑢𝑏1 and ua and 𝑢𝑏1is the vertex 𝑢𝑏1𝑢𝑔1 = 𝑒𝑖1 .  Then we 

have following two claims for getting the lower bound of 

diameter of G. 

Claim A. Suppose  ∆(G) = 
𝑙

2
, Since X is an ExED set in G, then 

there exits an edges 𝑒𝑖𝑓 , 𝑒𝑗𝑓  such that N(𝑒𝑗𝑓) ⋂ X = {𝑒𝑖𝑓}, for 2 ≤

𝑓 ≤∆(G).  Also by defintion of and ExED-set , the edges 𝑒𝑗𝑥 are 

adjacent to the edges  𝑒𝑤𝑥  , where 𝑢𝑑𝑥𝑢𝑐𝑥 = 𝑒𝑤𝑥 , for 1 ≤

𝑥 ≤∆(G).

 

Figure 3.1. The graph G having diam(G) ≥ 8, for ∆(G) ≥ 
1

2
 

 

 

From Figure[3.1] we can easily say that e(𝑢𝑑𝑦) = d(𝑢𝑑𝑦 , 𝑢𝑎) + 

d(𝑢𝑎, 𝑢𝑑𝑧) = 4 + 4 = 8, for all 𝑢𝑑𝑧 , 𝑢𝑑𝑦∈ V(G) with z ≠ y and 1≤ 

y, z ≤ ∆(G), which is the maximum eccentricity in G.  Then 
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diam(G) = 8.  Suppose that deg(ua) < ∆(G), then diam(G) > 8.  

Hence we can conclude that diam(G) ≥ 8, for ∆(G) = 
𝑙

2
 with 𝑙 ≥ 4.   

Claim B.  Assume that, ∆(G) <
𝑙

2
, then ∆(G) + 𝜉 = 

𝑙

2
⇒ 𝑙 =

2(∆(𝐺) + 𝜉) where 1 ≤ 𝜉 ≤
𝑙−2∆(G)

2
.  Suppose deg(ua) = ∆(G) 

and deg(𝑢𝑏𝑥) = ∆(G) with 𝑙 = 2(∆(G) + 𝜉), where 1 ≤ 𝜉 ≤

∆(G)(∆(G) − 2), by the above case, for lower bound of diameter 

of G, there exists atmost ∆(G) − 2 number of edges adjacent to 

each  𝑢𝑏𝑥, where 1 ≤ x ≤ ∆(G).  

 Let 𝑢𝑎𝑥𝑠  be the set of vertices adjacent to 𝑢𝑏𝑥, where 1 ≤ s ≤ 

∆(G) – 2.  Take 𝑢𝑏𝑥𝑠𝑢𝑎𝑥𝑠  =𝑒𝑙𝑥𝑠  such that N(𝑒𝑙𝑥𝑠) ∩ X = {𝑒𝑖𝑥𝑠}, 

where 𝑒𝑙𝑥𝑠∈ E(G) – X and 𝑒𝑖𝑥𝑠∈ X.  By our assumption N(𝑒𝑖𝑥𝑠) ∩ 

X = {𝑒𝑗𝑥𝑠}, where 𝑒𝑗𝑥𝑠∈ X, where 1 ≤ x ≤ ∆(G) and 1 ≤ s ≤ ∆(G) – 

2.  By definition of ExED set in G, there exists edges  𝑒𝑤𝑥𝑠 =

𝑢𝑐𝑥𝑠𝑢𝑑𝑥𝑠  , such that N(𝑒𝑤𝑥𝑠) ∩ X = {𝑒𝑗𝑥𝑠}.   

 

 
Figure 3.2. The graph G having diam(G) = 10 when ∆(G) <

𝑙

2
 

i.e., 𝑙 = 2(∆(𝐺) + 𝜉), where 1 ≤ 𝜉 ≤ ∆(𝐺)(∆(𝐺) − 2)) 

 

From figure[3.2], e(𝑢𝑑𝑥𝑔) = d(𝑢𝑑𝑥𝑔 , 𝑢𝑎) + d(𝑢𝑎, 𝑢𝑑𝑟ℎ) = 4 + 6 = 

10, where 1 ≤ 𝑔, ℎ ≤  (∆(𝐺) − 2) and 1 ≤ 𝑥, 𝑟 ≤ ∆(𝐺) with h≠
𝑔 and r≠ 𝑥, which gives the maximum eccentricity in G. Then 

diam(G) = 10, for 1 ≤ 𝜉 ≤ ∆(G)(∆(G) − 2).  Suppose deg(ua) < 

∆(G) and deg(𝑢𝑏𝑥) < ∆(G) with 𝑙 = 2(∆(G) + 𝜉), where 

(∆(G) − 1)2 ≤ 𝜉 ≤
𝑙−2∆(G)

2
, then diam(G) > 10.  Therefore 

diam(G) ≥ 10, for ∆(G) <
𝑙

2
 . 

 

IV. CONCLUSION 

This paper discusses and analyses the exact edge domination 

number for some standard graph. Using the exact edge 

domination number the diameter and size of the graph are 

disclosed. 
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