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Abstract—In this paper, techniques used to compress 

data, especially images are discussed. A deep learning 

model based on convolution neural networks is 

implemented and the results in the form of PSNR (Peak 

Signal to Noise Ratio) are compared. The main hurdles 

in compressed sensing of images are the sampling matrix 

design and the reconstruction method. To overcome 

these we propose a CNN framework called CS Net, which 

consists of a joined sampling network and reconstruction 

network. The sampling network adapts the sampling 

matrix during the training of data, which enables the 

compressed sensing measurements to maintain 

additional structural data for better recreation of 

images. The reconstruction network is divided into two 

parts, an elementary linear network, and a deep 

reconstruction non-linear network; it adapts a mapping 

between the endpoints of structural measurements and 

reconstructed images. In this project, we used a different 

number of blocks in the deep reconstruction and 

compared the results. The PSNR values of the 

reconstructed images gradually increase as we increase 

the number of residual blocks, but after a certain point, 

the values start decreasing[1]. 

The results obtained show that CSNet produces high-

quality images like those obtained from methods like 

FFT and Nyquist Shanon but with comparatively low 

computation costs[2][3]. 

Keywords— Compressed Sensing, Convolution Neural 

Networks, CSNet, Sampling matrix, Image 

reconstruction. 

I. INTRODUCTION 

Image compression is a signal compression 

technique in which the real picture is reproduced using 

a limited amount of memory. Picture compaction aims 

to reduce image duplication and make data storage and 

transit extra affordable. The fundamental purpose of 

such a system is to decrease the maximum quantity of 

data that may be stored so that the decoded image is as 

close to the original as possible. 

A. Overview 

The classical image capturing system typically 

obtains a high volume of samples focused on the 

Nyquist-Shannon sampling theorem, with a sampling  

ratio of at least two times the signal's bandwidth, and 

then compresses the signal for storage and retrieval  

using a computationally complex compression method 

to remove redundancy. However, in certain image 

processing applications where data gathering devices 

must be simple, this type of image capture system may 

not be preferred. 

Compressed Sensing (CS) is an emerging technique 

that illustrates a paradigm shift for picture storage and 

recovery that incorporates skimming and contraction. 

When a signal is sporadic in a domain, the compressed 

sensing theory indicates that a signal can be retrieved 

with many lesser observations than the Nyquist-

Shannon sampling theorem suggests. It is commonly 

known that images contain a lot of unnecessary data 

and may be expressed sparsely. As a result, according 

to CS theory, an image may be compressed and rebuilt 

effectively. 

Since the core CS study indicated that when a signal 

is sparse in a particular domain, it may be recreated 

with excellent clarity at a lower sampling ratio, there's 

been a great deal of interest in CS for picture capture. 

Image acquisition devices based on CS have been 

developed. The so-called single-pixel camera is the 

most well-known CS gadget among them. Other steps 

have been taken to improve the imaging versatility of 

CS-based cameras and to investigate their potential 

use in cellular devices and other portable devices. 

The creation of the sample matrix and the design of 

the reconstruction method are the two primary issues 

in the research of CS. In the literature, several 

solutions for dealing with these two issues have been 

offered. To address the very first difficulty, many 
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sample matrices, such as the random matrix, binary 

matrix, and structural matrix, have been created. 

Furthermore, all of these matrices are input signal 

independent sampling matrices, meaning they 

disregard the signal's properties. Many sparsity-

regularized-based solutions have been developed for 

the second issue, such as convex-optimization 

algorithms, greedy algorithms, and iterative 

thresholding algorithms. Certain efforts in image CS 

explored picture priors to create more complicated 

models; others, on the other hand, included more 

treatment efficiency in the repeated process of 

compression. 

In our research paper, new variations on the CS 

framework based on convolution neural 

networks(namely CSNet) are tried and the results have 

been compared to find the most optimum number of 

residual blocks in the advanced reconstruction 

network. 

 

We have used a Convolutional Neural Network 

(CSNet) to create a CS framework that contains a 

sampling network & a reconstruction network that are 

optimized together. The floating-point sampling 

matrix is foremost learned from the training pictures 

by the sampling network, allowing the CS 

measurements to preserve further image contextual 

data for improved recovery. 

Among the readings of CS and the rebuilt pictures, 

the reconstruction network adapts an end-to-end point 

mapping. It comprises a remnant training-based non-

linear deep reconstruction structure and an initial 

reconstruction network. Inter-block information may 

be successfully used by the reconstruction network, 

and blocking artifacts can be avoided. 

Unlike classic CS approaches, the learned model 

does not require the sampling matrix to be transferred 

from encoder to decoder. Traditional image CS 

reconstruction algorithms can also benefit from the 

learned sampling matrix. 

B. Principal of Image Compression 

The fact that nearby pixels are connected, therefore, 

they contain duplicate information. It is a frequent 

feature of most images. The first and foremost step is 

to find a representation of the image that is less 

coupled. Redundancy and the reduction of irrelevant 

features are two key components of compression. 

Irrelevancy reduction removes sections of the signal 

that the receiver will not notice, such as the Human 

Visual System (HVS). 

1)   Coding Redundancy:  The representation of 

information is linked to coding redundancy. Source 

codes serve as a representation of the information. 

When an image's grey levels are processed in a way 

that employs more coded symbols to represent each 

grey level than what is strictly necessary, the resulting 

picture is said to have coding redundancy. 

2)   Spatial/Temporal Redundancy:  As 

maximum 2-D intensity array pixels are connected 

spatially; content is duplicated in the representations 

of the associated pixels. Sequentially connected pixels 

in a video clip also replicate information. 

3)   Irrelevant Information:  Many 2-D intensity 

arrays carry data that the human supervision ignores 

and is irrelevant to the image's intended use. In the 

perspective that it isn't used, it is redundant. 

Image compression research tries to reduce the bits 

needed to represent an image as much as possible by 

eliminating spatial and spectral redundancy. 

C. Motivation 

In recent years, the transmission and storage of data 

have increased by many folds. Data compressions 

techniques are used to reduce the storage size of data 

and allow faster transmission of larger data over the 

internet. Images are one of the most popular data types. 

Image compression deals with reducing the size of an 

image by eliminating redundant and unnecessary 

signals from its sparse matrix. State-of-the-art 

methods like Nyquist-Shannon or Fast Fourier 

Transform allows high-quality reconstruction of 

images but at the cost of computational power. Higher 

computational power is not available throughout and 

also slows the speed of the process. Therefore, the 

compressed sensing technique offers compression of 

data below Nyquist rates making it an attractive 

solution in facial recognition systems and medical 

imaging. Compressed sensing produces images of 

similar quality but at lesser computation time. Hence, 

the need for a proper deep learning model for 

compressed sensing. 

 

II. BACKGROUND 
In classical picture acquisition, the analog signal is 

captured by collecting a large number of data samples 

based on the Nyquist-Shannon sampling theorem. 

Following the acquisition, the image (dense image) 

is converted over a basis Ψ (e.g., Fast Fourier 

transform of wavelet basis) with tiny coefficients for 

the majority of the places in the spatial domain of the 

image. 
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Figure 1An example showing traditional image compression 

and decompression using a basis function Ψ over a high-

resolution image. 

The pixels in the modified image are then 

shortened, removing a significant amount of data (95% 

in Fig. 1). The obtained picture (sparse image 

representation) may be easily stored as a dictionary of 

key-value pairs, with the key being the pixel's spatial 

orientation and the value being the transform 

coefficient. Compression is the term for this 

procedure. 

Image data in the form of a dictionary is very 

straightforward to send over computer networks and 

consumes a smaller amount of storage. 

The compressed sparse image is subjected to the 

inverse basis transform in order to rebuild the image. 

Decompression is the term for this procedure. 

A. Compressed Sensing Background 

Compressed sensing is a type of data collection that 

allows us to rebuild high-resolution pictures by 

sampling a significantly less amount of data than the 

usual image capture approach. 

When a signal is sparse in some domains, the CS 

theory allows flat representation of a wide-

dimensional signal into a dimension considerably tiny 

in contrast to the raw signal while permitting retrieval 

of the data from projections with precision. 

Particularly, visualize that 𝑥 ∈ 𝑅𝑁×1  is a real-valued 

signal (original image) and 𝜙 ∈ 𝑅𝑀×𝑁 is a sampling 

matrix. (𝑀 << 𝑁). The CS measurement collection 

process is written as  

𝑦 = 𝜙𝑥                                   (1) 

where 𝑦 ∈ 𝑅𝑀×1 is the Compressed sensed metric (CS 

measurement). The CS theory indicates that 

successfully recuperating 𝑥 is achievable because the 

signal 𝑥 is scarce in a certain domain 𝜓. 

The simplest way to describe CS reconstruction is 

to write it like this: 

                   min ‖𝜓𝑥‖𝑝 , s.t. 𝑦 = 𝜙𝑥          (2) 

 

The suffix P is normally assigned to 1 or 0, describing 

the sparseness of the vector 𝜓
𝑥
, where 𝑥 are the 

sparing factors w.r.t to scope. In previous literature, a 

wide variety of techniques for tackling this 

optimization issue have been offered. The convex 

optimization approach, for example, converts a 

nonconvex issue into a convex one to obtain an 

estimated solution. The most frequent convex 

optimization approach for CS restoration is basis 

pursuit. It solves a linear programming issue by 

replacing the L0 norm constraint with the L1 norm 

constraint. Such convex-programming approaches, on 

the other hand, have a large computational cost. 

Convex optimization, gradient-descent techniques, 

greedy algorithms, and Land weber (PL) algorithms 

are some of the methodologies presented in the 

literature for tackling this optimization issue. Despite 

their efforts, classical approaches have a high 

computational cost due to the necessity of repetitive 

computing[9]. Reconstructing a high-quality image 

using these CS approaches might take anything from a 

few seconds to many minutes. In addition, the 

sampling matrix from the encoder to the decoder 

should be sent 

 

 
Figure 2An example showing recovering original image X 

by sampling a few pixels (Φx) while sensing and solving for 

the sparse representation over a basis Ψ. 

A. Sparsity 

The term sparsity, as the name implies, relates to the 

smallest quantity of data we can obtain and retain in 

order to reconstruct an original signal/document from 

it. 

A sparse matrix is one with a large number of zero 

values. Sparse matrices are distinguished from dense 

matrices, which have a large number of non-zero 

values. 

The fascination with sparsity stems from the fact 

that its use can result in significant computational 

savings, as well as the fact that many big matrix 

problems encountered in practice are sparse. 

Sparsity should not be mistaken with missing data, 

because missing data indicates that a large number of 

data points are unknown. If the data is sparse, on the 

other hand, all of the data points are known, but the 

majority of them have little value[10]. 

A sparse matrix is a two-dimensional array of pixels 

with some pixels having zero intensity in terms of 

picture reduction. Sparsity is a technical term that 

refers to the percentage of cells in a database table that 

is empty. 

Finally, all image compression techniques and 

methodologies aim to discover the optimum sparse 

matrix that can identify a particular image and 

compress it in the most optimal spatial and time 

complexity way possible. 
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B. Nyquist-Shannon Theorem 

The Nyquist-Shannon theorem explains the 

sampling of a signal or waveform so that no 

information is lost[1][2]. 

Let’s say we have a signal X(t). On taking Fourier 

Transform of this signal, 𝑋𝛬(𝑓) = 𝐹{𝑥(𝑡)}, there will 

be a fmax for which, 

 

   𝑥|𝑓| = 0∀|𝑓| > 𝑓𝑚𝑎𝑥                           (3) 

 

such that beyond the maximum frequency 𝑓𝑚𝑎𝑥 , 

there is no power in the signal. The Nyquist-Shannon 

theorem indicates that if we're to sample this signal, 

we'd require samples with a frequency greater than 

double the signal's peak frequency, that is, 

                               fsample > 2fmax             (4) 

 

If that's the case, no information was sacrificed 

during the sampling procedure, and the source signal 

might be restored from the sampled signal. 

This theorem is a stepping stone toward more 

advanced signal (image) processing, and it serves as a 

benchmark for various techniques and methodologies 

aimed at achieving the best image compression. 

It also lays the groundwork for image compression 

algorithms that use a sampling frequency lower than 

Nyquist's. 

III. PROPOSED  WORK 

The formulation of the sampling matrix and the 

design of reconstruction algorithms are the two key 

problems in the research of compressed sensing. In the 

literature, several solutions for dealing with these two 

issues have been offered. To address the first 

difficulty, many sampling matrices have been devised, 

including the random matrix, the binary matrix, and 

the structural matrix. However, each one of these 

sampling matrices are independent of the signal, 

meaning they disregard the signal's properties. 

Many sparsity regularized-based approaches, such 

as convex optimization algorithms, greedy algorithms, 

and iterative thresholding algorithms, have been 

presented in response to the second difficulty. Several 

image CS works investigated pictures, prior to 

constructing more intricate models, while others added 

additional optimal factors into the recurrent 

thresholding procedure[4]. Some present state-of-the-

art CS reconstruction methods that take numerous 

minutes to recreate a solitary slightly elevated picture, 

whilst others have much worse reconstruction 

accuracy. Deep learning has lately been shown to be 

more effective in computer vision tasks. There are 

indeed some deep learning-based picture CS 

reconstruction techniques that employ a random 

floating-point sampling matrix that we are aware of. 

However, because block-by-block reconstruction 

approaches only employ Intra block information to 

recreate a block, blocking artifacts emerge, and 

postprocessing is frequently required. Because of the 

usage of an orthogonal matching pursuit algorithm, the 

postprocessing approach has are relatively high 

computational cost[7]. 

 

IV. IMPLEMENTATION  

Fig 2. Shows the proposed architecture of CSNet. This 

architecture is basically divided into three parts, i.e. 

block-based compressed sampling, initial 

reconstruction, and non-linear signal reconstruction. 

 
Figure 3 Flow Chart depicting the CSNet model 

architecture. 

A. Sampling Network 

In Block-based compressed sensing, the image is 

divided into 𝐵 × 𝐵 × 𝐿 where B is the height and 

width of the block and l denotes the number of 

channels. To make these blocks non-overlapping, we 

will be using a stride of Y.  

The measurements are then obtained with a 𝑛𝑏 × 𝑙𝐵2
 

sampling matrix 𝜙
𝐵

, where 𝑛𝐵 = [(𝑀 ∕ 𝑁)𝑙𝐵2
] 

 

𝑦𝑗 = 𝜙𝐵𝑋𝑗  is the formula for this procedure. 

 

If each row of the sampling matrix B is considered a 

filter, we may imitate this compressed sampling 

process using a convolutional layer. 

 

Because each block of image is B × B × 1, each of 

the sampling network's filters is similarly B × B × 1, 

resulting in each filter producing one measurement. 

 

To acquire 𝑛𝐵 CS measurements, the sampling matrix 

B has 𝑛𝐵 rows for the sampling ratio (𝑀 ∕ 𝑁). 

As a result, this layer has 𝑛𝐵 filters of size B × B × 1. 

For non-overlapping sampling, this layer's Stride is B 

× B. Furthermore, each filter is free of prejudice. In 

addition, this layer has no activation[6]. 
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The Block-based compressed sampling network (S) is 

conceptualized as 

  

𝑦 = 𝑠(𝑥) = 𝑤𝑠 ∗ 𝑥 

where * denotes convolutional operations, 𝑥 denotes 

the input image, y represents the CS measurement, 

and 𝑤𝑠 ∗ denotes 𝑛𝐵 filters that support B × B × 1. 
The result appears to be made up of 𝑛𝐵 feature maps, 

with each column representing the 𝑛𝐵 measurements 

of an image block. 

 
B. Initial Reconstruction Network 

The picture is rebuilt using a recovery network 

(abbreviated R), which consists of two networks. The 

first one is an Initial Reconstruction Network 

(abbreviated I) and the second one is a Deep 

Reconstruction Network (abbreviated D). 

R(y) = D(I(y)) 

Provided the jth block's CS measurement yj, the first 

reconstruction yields 𝑥𝑗~ = 𝜙𝐵~𝑦𝑗. Clearly, is a 

matrix with dimensions of 1B2 × 𝑛𝐵. 

 

To implement the first reconstruction procedure, we 

employ a convolutional layer with a particular kernel 

size and stride.  is adaptively optimized in the 

network. 

 

The first image reconstruction can be described as the 

following procedure I~(y): 

 

I~(y) = Wint * y 

 

The CS measurement is y, and the filters are Wint. The 

sampling network outputs a 1 × 1 × 𝑛𝐵 vector for 

each image block and the size of the output of the 

sampling network and the size of each filter in the 

initial layer are the same. 

As a result, Wint is equivalent to 1B2 filters with 

support of 1 × 1 × 𝑛𝐵. To reconstruct each block, we 

have set the stride of this convolutional layer to 1 × 1. 

Bias isn't present either. 

Each column of I~(y) appears to be of 1 × 1× 1B2 

type. The reassembled block, however, is still a vector.  

To get the initial linear reconstruction, the 

combinational layer has two functions, the first one is 

a reshape function and the second one is a 

concatenation function. This whole process has been 

denoted by I(y): 

x~ = I(y) = k (for all image blocks 𝛾(Image block)) 

where 𝛾 is the reshape function and k is the 

concatenate function.[8][11] 

 

The reconstruction of the signal in this network is 

linear as we are not using any activation functions 

 

 
C. Deep Reconstruction Network 

We have used residual block in this network to 

accomplish the non-linear signal reconstruction. There 

are three operations in this network: Feature 

extraction, non-linear mapping and feature 

aggregation. 

 

D. Why have we used Residual blocks? 

In a word, ResNets handle the problem of deep neural 

network effectiveness degrading, as the system grows 

larger. 

A leftover block is a group of tiers in which the result 

within one layer is retrieved and combined with the 

result of a level farther in the block. The fluctuation is 

then transferred to the main path by mixing it with the 

result of the appropriate layer. This by-pass connection 

is known as a shortcut or skip-connection[4]. 

 

1) Feature Extraction: 

The high-dimensional feature is extracted from the 

local receptive field using a feature extraction method. 

It consists of a convolutional layer and an activation 

layer. 

 

The convolutional layer has d filters of size f ×f × 1 

since it works with the initial reconstruction output. 

This operation is denoted by the symbol De(x~): 

De(x~) = Activation(We * x~ + Be) 

The initial reconstructed result generated by the Initial 

reconstruction network is denoted by x~.  

 

We stand for d filters with sizes of  f ×f × 1, Be for 

biases of size d ×1, and Activation() for activation 

function. For the activation function, we used the 

Parametric Rectified Linear Unit (PRelu, max(0,x) + a 

* min(a,x)). 

 

2) Non-Linear Mapping: 

This network dynamically cascades residual block 

convolutional layer and activation layer after obtaining 

the high-dimensional image feature, increasing the 

net-work non-linearity. 

This procedure is written as: 

 

Di
m1(x~) = Act (Di-1

m2 (x~) + Wi
m1 * Di-1

m2 (x~) + Bi
m1) 

Di
m2 (x~) = Act ( Wi

m2 * Di
m1 (x~) + Bi

m2) 

D0
m2 (x~) = De (x~) 
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Where i ∈ { 1,2,....,n }. There is a short skip 

connection between the input and output in the 

residual block. Wi
m1 and Wi

m2 contain f ×f × d size d 

filters, Bi
m1 and Bi

m2 are d × 1 biases, and Act(.) is a 

PRelu activation function. 

 

3) Feature Aggregation: 

A feature aggregation operation is used to reconstruct 

the image from the high-dimensional feature to 

provide the final output. The operation is described as 

Da (x~): 

Da (x~) = Wa * Dn
m2 (x~) + Ba 

Wa denotes a filter of size f ×f × d, while Ba denotes 

the bias of size 1 X 1. 

In the diagram, we can see that we have also made a 

long link between the linearly reconstructed picture 

and the deep reconstruction network’s output Da (x~) 

to speed up network convergence. As a result, the final 

reconstructed image looks like this: 

D(x~) = x~ + Da(x~) 

 

 
V. RESULT ANALYSIS  

 
Table 1 Results obtained from the deep learning model. 

Number of Residual Blocks PSNR 

1 28.997789713705338 

2 29.022606572723685 

3 29.218752044341894 

4 29.440226792141814 

5 29.170336279307907 

 

 
Figure 4 Plot of PSNR values vs number of residual blocks. 

As shown in figure 4, initially the PSNR value rises 

with increase in the number of residual blocks, which 

implies that the quality of compressed images also 

increases. But after reaching a certain number of 

blocks (4 in this case), the PSNR value attains it’s 

maximum value and decreases gradually thereafter. 

Therefore, 4 residual blocks is the most optimum 

setting to obtain high quality images from the CSNet 

framework. 

VI. CONCLUSION & SCOPE 

 

In this paper, a better approach to state-of-the-art 

image-compressed sensing techniques have been 

proposed. The traditional methods have many issues, 

like high computational power requirements and slow 

computational speeds. 

Although there are methods that require less 

computation and produce faster results but at the 

expense of the quality of the output images. CSNet 

reconstructed images achieve high average PSNR 

values, and low computation times, depicting that the 

learned CS measurements retain more image structural 

information for better reconstruction, offering high 

quality compressed images at faster running speed. We 

found that the CSNet achieves peak results when four 

residual blocks were used. 

Furthermore, there is a huge scope of research in the 

field of compressed data sensing. Like, applying the 

CSNet framework in real world applications such as 

facial recognition and MRI scans.
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