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Abstract- This research was conducted to develop the 

important concepts on meeting combinations and interval 

graphs. It specifically aimed to (1) examine the properties of 

interval graphs; (2) determine the number of different 

arrangements for n segments of distinct identities; (3) 

determine the number of “meeting structures” or 

intersection for n segments and (4) establish the matrix 

representation and characteristic polynomial of interval 

graph. 

 

 The results of the study revealed that, the vertices of 

an interval graph G can be ordered such that vi is connected 

to vk implies vj is connected to vk whenever i < j < k. The 

number of different arrangements at the endpoints for n 

segments is n!, which indicates that some of them have the 

same “meeting structure” or intersection denoting the 

number of distinct “meeting structure” for n segments by 

M(n), it was found out that for every value of M(n), there is a 

unique “meeting structure” or intersection for a given set or 

family of interval segments, for n ≤ 8. Likewise, the matrix 

representation of an interval graph can be used to 

characterize the distinct “meeting structure” of n segments. 

 

Index Terms- interval graph, meeting structure, matrix 

representation  

 

I. INTRODUCTION 

In a technological age, we have all become learners of 

mathematics. It is mathematical knowledge that has fuelled the 

fires of technological advances and it is those very technological 

advances that generate new and more complex mathematics. The 

task then of mathematics education is to help students and those 

who work with them to understand how to learn mathematics, 

how to solve problems, and how to acquire the automaticity with 

skills and procedures necessary for problem solving (Bayaga, 

2007). 

 Mathematics is not only a conception of the relationship 

of numbers and the formations of objects in the space of the real 

world, but is also a technology that can be applied directly to 

solve issues in many aspects of the practice. Mathematics is a 

kind of sense and a mode of thought. We often solve problems 

by the standpoint of mathematics, by the viewpoint of 

mathematics and with the manners of mathematics, it is also a 

way of communication, for it provides a simple and precise 

information transmission. In conclusion, the matters, ideas, 

methods, and languages of mathematics had been widely applied 

in natural science, social science, and the operation of society as 

an important part of modern culture. 

 Mathematics provides an environment for logical, 

creative investigation of quantitative and relational situations. It 

consists of a large body of knowledge and many sub-disciplines, 

each of which provides an array of tools and techniques for 

exploration and analysis. 

 Combinatorics, as one of its discipline, is sometimes 

called the science of counting. It is concerned with the selection, 

arrangement and operation of elements within sets. It has 

applications in such diverse areas as managing computer and 

telecommunication networks, predicting poker hands and 

dividing tasks among workers. Among the many topics in 

combinatorics is meeting combinations and interval graphs 

(West, 1996). 

 An intersection graph is a graph that represents the 

pattern of intersections of a family of sets. Any graph may be 

represented as an intersection graph, but some special classes of 

graphs may be defined by the types of sets that are used to form 

an intersection representation of them and one of these classes 

are interval graphs. 

 An interval graph is the intersection graph of a set of 

intervals on a real line. It has one vertex for each interval in the 

set, and an edge between every pair of vertices corresponding to 

intervals that intersect. The path on each vertex are basically the 

“meeting structure” or “meeting combinations” of these graphs. 

Different patterns of intersection can occur so any pattern or 

arrangement establishes a set of “meeting” between two or more 

segments. 

 Interval graphs are chordal graphs and hence perfect 

graphs. By chordal graph, it means it does not contain an induced 

graph of length greater than three, while by perfect graph, it 

means the chromatic number of every induced subgraph is equal 

to the clique number of that subgraph. Their complements are 

comparability graphs, and the comparability relations are 

precisely the interval orders. Interval graphs are useful in 

modelling resource allocation problems in operations research as 

well as in linear scheduling problems having constraints on 

concurrent events. According to West (1996), some of the 

classical applications of interval graphs are analysis of DNA 

chains, phasing of traffic lights, archeological seriation and 

register allocation. 

 

Objectives of the Study 

 This study aims to discuss the important concepts on 

meeting combinations and interval graphs. Specifically, it sought 

to 

1. examine the properties of interval graphs 

2. determine the number of different arrangements for n 

segments of distinct identities 

3. determine the number of “meeting structures” or 

intersection for n segments 

4. establish the matrix representation of an interval graph 

together with the associated characteristic polynomial. 
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Definition of Terms and Notations 

 A graph or undirected graph G is an ordered pair G = 

(V, E), such that V is a set whose elements are called vertices or 

nodes and E is a set of pairs (unordered) of distinct vertices 

called edges or lines. 

 The valency of a vertex is the number of edges 

connected to a vertex in a graph. 

 An m x n matrix is a rectangular array of mn real (or 

complex) numbers arranged in m horizontal rows and n vertical 

columns. 

 The adjacency matrix MG = (mij) of G is defined as an n 

x n matrix whose elements are defined by  

𝑚𝑖𝑗 = {
1 𝑖𝑓 [𝑣1, 𝑣2]  ∈ 𝐸

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 The characteristic polynomial of a graph G, denoted by 

P(G: ʎ) is the characteristic polynomial of the adjacency matrix 

MG of the graph G, that is 

P(G: ʎ) = det (ʎ • 1 – MG)  

 A clique is a set of vertices such that for every two 

vertices, there exists an edge connecting them. In other words, a 

clique is a complete graph. 

 The clique number of a graph G = (V, E), denoted by 

ω(G), is the size of the largest subset of V inducing a clique. 

 The determinant of an n – square matrix A, denoted as 

det(A) or |A| is  

∑1𝜎𝑎1𝑗1𝑎2𝑗2𝑎3𝑗3 … 𝑎𝑛𝑗𝑛  

where the sum is taken all over permutations 𝜎 =  𝑗1𝑗2 …𝑗𝑛 and 

(1)𝜎 = {
1 𝑖𝑓 𝜎 𝑖𝑠 𝑒𝑣𝑒𝑛
− 1 𝑖𝑓 𝜎 𝑖𝑠 𝑜𝑑𝑑

 

 An interval graph is an intersection graph of intervals 

on a real line where vertices are represented by intervals and 

there is an edge between two vertices if and only if their 

corresponding intervals intersect. Let {𝐼1, 𝐼2, … , 𝐼𝑛} be the set of 

intervals of real numbers, then the corresponding interval graph 

is G = (V, E) where V = {I1, I2, …, In} and E = {{Iα, Iβ}/ Iα ∩ Iβ ≠ 

∅.  

 

Significance of the Study 

 The discussion and results of the study is of great 

importance to: 

1. Analysis of DNA chains: Interval graphs were invented for the 

study of DNA. Benzer (1959) established the linearity of the 

chain for higher organisms. Each gene is encoded as an interval, 

except that the relevant interval may contain a dozen or more 

irrelevant junk pieces called “introns” among the relevant pieces 

called “exons”. Under the hypothesis that mutations arise from 

alterations of connected segments, changes in traits of 

microorganisms can be studied to determine whether their 

determining amino-acid sets could intersect. This establishes a 

graph with traits as vertices and “common alteration” as edges. 

Under the hypothesis of linearity and contiguity, the graph is an 

interval graph, and this aids in locating genes along the DNA 

sequence (Berge, 1979). 

2. Archeological seriation: Given pottery samples at an 

archeological dig, archaeologist seek a time-line of what styles 

were in use when. They assume that each style was used during a 

single time interval and that two styles appearing in the same 

grave were used concurrently. A graph is formed with the styles 

as vertices, making two styles adjacent if they appear together in 

a grave. If this is an interval graph, then its interval 

representation are the possible time-lines (Berge, 1979). 

 Furthermore, it is hoped that this study can stir up 

greater interest in mathematics. The elegance of the logical 

processes present the subject as a systematic process. In this way, 

teachers and mathematics enthusiasts may gain more insight in 

dealing with problems that may take a similar pattern as what are 

presented. 

 

Research Design 

 This study will use descriptive research method, 

specifically on meeting combinations and interval graphs.  

 

Results and Discussion 

 Let n continuous segments with freely defined starting 

and ending points be placed along the real line, and consider the 

intersection between these segments. Patterns of intersection can 

arise when n intervals of various lengths are placed with their 

starting points on the unit interval. For any given arrangement, 

there maybe some regions when no segment is present, some 

where just one segment is present, some where exactly two 

segments overlap, some where exactly three segments overlap, 

and so on. These arrangement establishes a set of “meetings” 

(intersection) between two or more segments. To illustrate, the 

figure shows the placements of six segments, and identifies the 

meetings between them. 

Figure 1. The six interval segments on the real line.  

 

   

The meeting for this arrangement are abc, acd, ade, and 

df. In general, the number of different arrangements of the 

endpoints for n segments (with distinct identities) is given in the 

following conjecture. 

Theorem 1. Consider n distinct segments and let Nn denote the 

number of distinct arrangements of the n segments, then 

𝑁𝑛 = 𝑛(2𝑛 − 1)𝑁𝑛−1 = 
(2𝑛)!

2𝑛
 

Proof: 

 For the first segment, there is obviously only one 

arrangement. This segment divides the axis into three regions, 

namely, the region to the left of the starting point, the region 

between the starting and ending points (i.e. the region covered by 

the segment), and the region to the right of the ending point. 

Therefore, the starting point of the second segment can be placed 

in any one of these regions, and the ending point can be placed in 

the same region or any other regions to the right of the region 

containing the starting point. Thus, there are six distinct ways of 

placing the second segment. 
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 In general, as we prepare to add the nth segment, there 

will already be n – 1 segments in place, and the 2(n – 1) terminal 

points of these segments divide the axis into 2n – 1 regions. The 

starting point of the nth segment can be placed in any of these 

regions, and then the ending point may be placed in the same or 

in a more rightward region. Thus, the number of possibilities for 

placing both these points is (2n – 1) + (2n – 2) + … + 2 + 1, 

which is equal to n(2n – 1). It follows that if we let Nn denote the 

number of distinct arrangements of n segments, then we have 

𝑵𝒏 = 𝒏(𝟐𝒏 − 𝟏)𝑵𝒏−𝟏 =  
(2𝑛)!

2𝑛
 

 This applies only if the n segments have specified 

identities. If we relax this condition, allowing the labels of the 

segment to be interchangeable, then the number of distinct 

arrangement is much less. In general, we will have n starting 

points, so it only remains to place the n ending points. The only 

restriction is that each ending point must follow its starting point. 

Thus, the ending point for the first segment (i.e., the segment 

with the left-most starting point) can be places in any of n 

regions, delimited by the n starting points. We thus have the 

following corollary. 

 

Corollary 2. Consider n indistinguishable segments and let 𝑁𝑛
′ 

denote the arrangement of n indistinguishable segments, then  

𝑵𝒏
′ = n! 

Proof: 

 The ending point of the second segment can be placed 

in any of the n – 1 regions to the right of the second starting 

point, and so on. (The arrangement of the ending points in 

between consecutive starting points has no effect on the presence 

of intersections). Consequently, the number of arrangements for 

indistinguishable segments is simply n!.  

 However, this still distinguishes between the 1st 

segment, the 2nd segment, and so on. It is possible for two or 

more distinct arrangements to yield the same “meeting 

structures” up to permutation of the segments. For a trivial 

example, consider the two arrangements of three segments 

shown below. 

Figure 2. Three interval segments on the real line.  

 
     (a)    (b) 

  

The segment labels merely indicate the order of the 

starting points, not implying any distinguishable identity for the 

segments. 

In the arrangement shown in Figure 2(a) above, the 

meeting structure is "ab", which signifies that the first and 

second segments overlap.  In the arrangement in Figure 2(b), the 

meeting structure is "bc”, which signifies that the second and 

third segments overlap.  If the orderings of the start times for the 

segments in the meeting structure are disregarded, then these two 

arrangements induce the same meeting structure.  On this basis, 

what is the number of distinct meeting structures for n segments?  

Let M(n) denote the number of distinct meeting 

structures for n segments.  Obviously for n = 0 and n = 1 

segments, no meetings are possible, so there is only one meeting 

structure in each of these cases, namely the null structure, 

denoted by {∅}.  Thus we have M(0) = M(1) = 1.    

For n = 2 segments there are two possible meeting 

structures, corresponding to the fact that either these segments 

overlap or they do not.  We will let {∅, ab} denote these two 

possibilities, and we have M(2) = 2.  

For n = 3 segments, there are 3! = 6 distinct 

arrangements, since the number of permutation of n different 

things taken n at a time is n!. These arrangements can be 

expressed symbolically as 

∅, 𝑎𝑏, 𝑏𝑐, 𝑎𝑏 + 𝑏𝑐, 𝑎𝑏 + 𝑎𝑐, 𝑎𝑏𝑐 

However, as noted above, the arrangements ab and bc 

represent the same meeting structure.  Likewise the arrangement 

ab + bc is the same structure as ab + ac.  In both cases, one 

segment meets with each of the other two, but the other two don't 

overlap with each other.  Therefore, the number of distinct 

meeting structures for n = 3 segments is just four, consisting of 

the set {∅, ab, ab + bc, abc}, and so we have M(3) = 4. Examples 

of the four types of outcomes for n = 3 are shown on the figure. 

Figure 3. The four meeting structures for three interval segments.  

 

 

The expression inside the square brackets signify the structure of 

the set of intersection. 

The meeting "abc" can also be written in the form "ab + 

ac + bc", because these both signify a triple intersection between 

the segments a, b, and c.  The conjoined characters signify a 

mutual meeting of these segments, and the "+" symbol represents 

logical "AND".  Thus both of these operations are forms of 

"intersection".  Since the basic sets are continuous segments on 

the one-dimensional x axis, the three pairwise meetings of three 

segments imply that the first ending point occurs after the last 

starting point, so there is a region on three-way intersection.  

However, the "meeting" relation between segments is not 

transitive, because ab + bc does not imply ac. 

For n = 4 segments, we examine all n! = 24 distinct 

arrangements and finding out that there are only ten distinct 

meeting structures. These are   

 (1) ∅   (3) ab (c + d) 

 (3) ab   (5) a (bc + d) 

 (4) a (b + c)  (2) ab + bc + cd 

 (1) ab + cd  (2) abc 

 (2) a (b + c + d)  (1) abcd 
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(The number to the left of each structure is the number of 

occurrences of that structure in the n! arrangements.)  Hence we 

have M(4) = 10.   

 To determine the value of M(5), we could examine each 

of the 5! = 120 arrangements by hand, and check for the unique 

structures, but this would be very laborious.  To automate the 

process, we can step through each of the n! placements of the n 

ending points, and for each arrangement we can easily determine 

the pairwise meetings.  We can then count how many pairs 

contain the first segment, how many for the second, and so on.  

We can then count how many segments appear in exactly one 

pair, how many in exactly two, and so on.  This gives a set of 

numbers d1, d2, ... that characterize the meeting structure, 

independent of the orderings of the segments.  If two structures 

are characterized by different values of dj, then they are certainly 

distinct structures, so we can determine a lower bound on the 

value of M(n) by determining the number of unique 

characteristics {d1, d2, ... }.   

For the case n = 5, this criterion turns out to be nearly 

sufficient to distinguish all the structures.  There are 26 distinct 

sets of {dj} indices, so we know M(5) is at least 26.  However, it 

is possible for distinct meeting structures to have the same set of 

{dj} values.  This occurs for the structures  ab + ac + bc + de  

and  ab + bc + cd + de.  In each case, two letters appear exactly 

once, and the other three letters appear twice each.  However, 

they are obviously different structures, as seen by the fact that the 

first one reduces to abc + de whereas the second is irreducible.  

So, there are actually M(5) = 27 distinct meeting structures with 

n = 5.  These are shown below.   
∅  a (b + c + d) + de  a (bc + de) 

ab  a (bc + d)  a (b (c + d) + e) 

ab + cd  abc + d (a + e)  a ( b ( c + d) + de) 

a (b + c)  a (b + c + d) + c (d + e) a (bcd + e) 

a (b + c) + de ab (c + d)  ab (c + d + e) 

ab + ac + cd ab (c + d) + de  ab (cd + e) 

abc  abcd   abc (d + e) 

abc + de  a (b + c + d + e)  ab + bc + cd + de 

a (b + c + d) a (bc + d + e)  abcde 

To help distinguish structures that have the same {dj} 

sets, consider again the two structures ab + ac + bc + de and ab 

+ bc + cd + de.  If we replace each letter by the number of times 

in which it appears, these become 2•2 + 2•2 + 2•2 + 1•1 and 1•2 

+ 2•2 + 2•2 + 2•1 respectively, clearly distinct.  Carrying out the 

multiplications and additions numerically, these give the values 

13 and 12 respectively.  These sums are an additional 

discriminator that can be used to help count the distinct meeting 

structures.  On this basis, we can distinguish 91 meeting 

structures for n = 6.  However, there are actually M(6) = 92 

distinct meeting structures.  The two that are indistinguishable 

based on the criteria described are  ab + bc + de + df + ef  and  

ab + bc + cd + de + ef.  These have the same set of valences, 

and the same pairing of valences, but they are nevertheless 

distinct structures, as shown by the fact that the first can be 

reduced to ab + bc + def, whereas the second is irreducible. 

We can define another discriminator by replacing each 

letter not with the valence of that letter, but with the sum of the 

valences of all the letters with which it is paired.  For example, in 

the first structure e is paired with d and f, and these two letters 

appear twice each, for a total of 4, so we replace the letter e with 

4.  Doing the same for all the other letters in these structures, and 

carrying out the multiplications and additions numerically, we 

get  

2•2 + 2•2 + 4•4 + 4•4 + 4•4 = 56 

2•3 + 3•4 + 4•4 + 4•3 + 3•2 = 52 

By this criterion, it enables us to distinguish between 

these two structures.   On the same basis we can determine that 

M(7) = 369, meaning that there are 369 distinct meeting 

structures for n = 7 segments.  However, for n = 8 segments the 

criteria we have described so far are not sufficient to distinguish 

between all the different structures.  We find that there are at 

least 1800 such structures by these criteria, but in fact there are 

1807.  It is interesting to try to identify the most efficient 

discriminators between these structures.  Obviously if we are 

given two sets of pairing expressions we can simply try all 

possible permutations of the letters and terms, to see if they can 

be brought into agreement, but this in not feasible for large 

values of n. 

Table 1. Sample values of the number of distinct meeting 

structures for n segments: 

 

n M(n) 

0 1 

1 1 

2 2 

3 4 

4 10 

5 27 

6 92 

7 369 

8 1870 

  

 

Matrix Representation of the Meeting Structure of n 

Segments: 

There are several different ways to represent a graph in 

a computer. Although graphs are usually shown 

diagrammatically, this is only possible when the number of 

vertices and edges is reasonable small. Graphs can also be 

represented in the form of matrices. The major advantages of 

matrix representation is that, the calculation of paths and cycles 

can easily be performed using well known operations on 

matrices. Any graph of n vertices with an n x n symmetric matrix 

is called the graph’s adjacency matrix. Each column and each 
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row of the adjacency matrix represents a vertex. A 1 is placed in 

a position if the two vertices that the position represents are 

connected, a 0 is placed in that position if the two vertices are not 

connected. In general, the number of 1’s in the kth row/column 

corresponds to the number of edges adjacent to vk. 

One way of characterizing the unique meeting structures 

for n segments is in terms of the determinant of a certain n x n 

matrix.    

Let ak with k = 1, 2,.., n designate the n segments, and 

define an n x n matrix A with the non-zero components Aj,k = 1 

for each pair of indices j, k such that ajak(or akaj) is a connected 

pair.  In addition, we set the diagonal values of A to the 

parameter x, so we have Aj,j = x for j = 1 to n.    

Note that a meeting structure is specified as a union of 

m pair-wise connections.  If no two segments meet, then m = 0.  

If there is a connection between every pair of segments, then m = 

n (n-1)/2. 

Given the matrix A for a particular structure, the 

determinant of A is a polynomial in the parameter x.  Since the 

determinant of a matrix is invariant under permutations of the 

row/columns, it follows that this polynomial characterizes a full 

equivalence class of meeting structures.  Thus we can use these 

polynomials to discriminate between distinct structures.  To 

illustrate, consider the following two meeting structures for n = 7 

segments:  

 

(1) a2 a3 + a3 a4 + a3 a5 + a4 a5 + a4 a6 + a4 a7 + a5 a6 + a5 a7 

(2) a2 a3 + a2 a4 + a2 a5 + a2 a6 + a3 a4 + a3 a5 + a5 a6 + a5 a7 

 

These structures have the same valence sets (i.e., they 

each have two characters that appear in four pairs, one that 

appears in three pairs, two that appear in two pairs, and one that 

appears in one pair), so in order to distinguish between them 

using the previous method we need to go to higher-order 

valences.  However, these structures correspond to the matrices  

 

Figure 4. 

 

[
 
 
 
 
 
 
𝑥 0 0 0 0 0 0
0 𝑥 1 0 0 0 0
0
0
0
0
0

1
0
0
0
0

𝑥
1
1
0
0

1
𝑥
1
1
1

1
1
𝑥
1
1

0
1
1
𝑥
0

0
1
1
0
𝑥]
 
 
 
 
 
 

       

[
 
 
 
 
 
 
𝑥 0 0 0 0 0 0
0 𝑥 1 1 1 1 0
0
0
0
0
0

1
1
1
1
0

𝑥
1
1
0
0

1
𝑥
0
0
0

1
0
𝑥
1
1

0
0
1
𝑥
0

0
0
1
0
𝑥]
 
 
 
 
 
 

 

    (a)              (b) 

and the determinants of the above matrices are  

x2 (x – 1) (x4 + x3 – 7x2 – x + 4) for Fig.4(a) 

x (x6 – 8x4 + 6x3 + 7x2 – 4x – 1) for Fig.4(b) 

 

This shows how we can immediately distinguish 

between these two structures.  (For automated numerical 

purposes, we can simply evaluate these polynomials for a few 

arbitrary values of x to discriminate between them). 

The matrices and characteristic polynomials for the four 

distinct meeting structures for n = 3 segments are shown below. 

Figure 5. 

 

det [
𝑥 0 0
0 𝑥 0
0 0 𝑥

] =  𝑥3 det [
𝑥 1 0
1 𝑥 0
0 0 𝑥

] = 𝑥 (𝑥2 − 1) 

(a)   (b) 

 

det [
𝑥 1 0
1 𝑥 1
0 1 𝑥

] = 𝑥 (𝑥2 − 2)det [
𝑥 1 1
1 𝑥 1
1 1 𝑥

] =  (𝑥 − 1)2 (𝑥 + 2) 

 (c)   (d) 

 

Likewise we can determine the characteristic 

polynomials for each of the 10 interval graphs on n = 4 nodes, 

shown below 

 

∅ x4 

ab x2 (x – 1) (x + 1) 

ab + bc x2 (x2 – 2) 

ab + cd (x – 1)2 (x + 1)2 

abc x (x + 2) (x – 1)2 

ab + bc + cd (x2 + x – 1) (x2 – x – 1) 

abc + cd (x – 1) (x3 + x2 – 3x – 1) 

abc + abd x (x – 1) (x2 + x – 4) 

ab + ac + ad x2 (x2 – 3) 

abcd (x + 3) (x – 1)3 

 
As noted previously, the only other plane graph on four nodes is 

the four-loop 

ab + bc + cd + da  x2 (x – 2) (x + 2) 

which is not an interval graph.  
  

Summary and Conclusions  

 This research was conducted to develop the key 

concepts on meeting combinations and interval graphs. It 

specifically aimed to (1) examine the properties of interval 

graphs; (2) determine the number of different arrangements for n 

segments of distinct identities; (3) determine the number of 

“meeting structures” or intersection for n segments and (4) 

establish the matrix representation and characteristic polynomial 

of a graph. Based from the results of this research, the vertices of 

an interval graph G can be ordered such that vi  is connected to vk 

implies vj is connected to vk whenever i < j < k; the number of 
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different arrangements of the endpoints for n segments is n!, but 

since some of these arrangements yields the same intersection, 

then the number of possible distinct “meeting structure” for these 

segments will be reduced to M(n); the matrix representation of an 

interval graph can be used to characterize the unique “meeting 

structures” of these segments. 
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