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Abstract- Population forecasting plays a constructive role in 

altering population policy and promoting the development of 

social, economic, natural disasters (rainfalls, cyclone, flooding 

and earthquakes) and pandemic of infectious disease such as 

seasonal dengue, malaria and novel Coronavirus (2019-

nCoV/SARS-CoV-2) endeavors. the city of Karachi has 

challenged frequent problems due to uncontrolled population 

dynamics, morphological pattern, their socio-health, and climate 

impacts on seasonal disease.In this research, we have found a 

suitable stochastic Auto Regressive Integrating Moving Average 

(ARIMA (p, d, q)) model by using diagnostic checking to 

overcome the aberrant of the Karachi city annual population data 

intervals from 1951 to 2015 respectively.The population data of 

Karachi city in 2015 is also verified , The results analysis are 

shown that the actual fitting outcome of the model is appropriate, 

Finally, comparing the accurateness of the ARIMA model, Holt-

Winters (Non-Seasonal) algorithm, linear - exponential trends on 

the base of Normality check MAPE, Geary’s α and Sample 

Kurtosis b2 statistic test for population forecasting of the time 

intervals are 15 years and the forecast prospect range from 5 to 15 

years. The results show that the ARIMA (1,2,1) seem to similar 

Holt-winters forecasting can extend appropriate results and is 

fitted for population forecasting.In the future, these results will be  

more helpful for investigate the epidemiological trend of the 

occurrence and pandemic of COVID-19.In addition, the stochastic 

analysis approach will be employed to increase the perception of 

data analysis, thus providing scientists more efficiently to the 

urban environment in the Karachi region. 

 

Index Terms- ARIMA (p, d, q) 

Holt-Winters algorithm, Diagnostic checking, autocorrelation 

coefficients (ACF), partial autocorrelation coefficients (PACF). 

 

I. INTRODUCTION 

he Stochastic Autoregressive integrated moving average  

(ARIMA) model is used to model the population data [1-3]. 

The order of an ARIMA model is frequently used by notation 

ARIMA (p, d, q). The pure ARIMA is mathematically express as,  

𝑊𝑡 =
𝜇+𝜃(𝐵)

∅(𝐵)
𝑎𝑡        (1) 

 𝑊𝑡is indicate the data time series  of observed data (Yt) , at  shown 

the independent random error , 𝜇 is the expected value (mean) in  

B is the back shift operator that is 𝐵𝑋𝑡 = 𝑋𝑡−1 and ∅(𝐵)is the auto 

regressive operator which is presented as a mathematical 

expressions  in the back shift operator  ∅(𝐵) = 1 − ∅1𝐵 − ⋯ −
∅𝑝𝐵𝑝, 𝜃(𝐵) is the moving average operator denoted[4] as an 

expression  in the back-shift  operator [5, 6]. The ARIMA notation 

with constant term as inscribed  ∅(𝐵)(𝑊𝑡 − 𝜇) = 𝜃(𝐵)𝑎𝑡, else 

∅(𝐵)𝑊𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝜃(𝐵)𝑎𝑡, here,𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = ∅(𝐵)𝜇 = 𝜇 −
∅1𝜇 − ∅2𝜇 − ⋯ − ∅𝑝𝜇. 

The general ARIMA model with data time series also called 

ARIMA is written as 

𝑊𝑡 = 𝜇 + ∑
𝜔𝑖𝐵

𝛿𝑖𝐵𝑖 𝐵𝑘𝑖𝑋𝑖,𝑡 +
𝜃(𝐵)

∅(𝐵)
𝑎𝑡      (2) 

Where,𝑋𝑖,𝑡is ith time series or a difference of the time series at 

time t, 𝑘𝑖 ist the time lag or (delay) for the effect if the ith time 

series, 𝜔𝑖(𝐵) is the numerator time delay for the effect other ith 

time series and 𝛿𝑖(𝐵) is denominator of the transfer function for 

ith time series [7]. The model can be written more closely is  

𝑊𝑡 = 𝜇 + ∑ Ψ𝑖𝐵 𝑖 𝑋𝑖,𝑡 + 𝑛𝑡  (3) 

Where Ψ𝑖𝐵 is the transfer function time   series modeled as a ratio 

of 𝜔 𝑎𝑛𝑑 𝛿 expression: Ψ𝑖(𝐵) = (𝜔𝑖(𝐵)/ 𝛿𝑖(𝐵))𝐵𝑘𝑖   is the noise 

series: 𝑛𝑡 = (θ(𝐵)/ 𝜙(𝐵)) 𝑎𝑡 , this is the factor Modeled  

𝑊𝑡 =  𝜇 +
𝜃1(B)𝜃2(B)

∅1(𝐵)∅2(𝐵)
𝑎𝑡                 (4) 

Where  ∅1(𝐵)∅2(𝐵) = 𝜙(𝐵)𝜃1(B)𝜃2(B) = 𝜃(𝐵), 𝜙  and 𝜃  is 

indicated autoregressive and moving average orders of the 

T 
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ARIMA model [8, 9,11]. The first part, it has an integrated (I) and 

the component (d) which represents the order of differencing to be 

performed on the series to conquer stationarity. The second part of 

ARIMA consists of an Auto Regressive Moving Average model 

for the series provide the stationary through differentiation. The 

Auto Regressive Moving Average (ARMA) part is auxiliary 

decomposed into Auto Regressive and Moving Average 

components [11]. The Auto Regressive (AR) parts are confined 

the correlation among the present values of the time series data 

and some of its past values, AR (1) and AR(2) denotes that the 

existing observation is correlated with instant past values at time 

[11]. The moving Average (MA) parts are represent the duration 

of the influence of a random shock, MA (1) and MA(2) indicates 

that a shock on the value of the data series at time t is correlated 

with the astonish at time t = 1 and t = 2. The Auto Correlation 

Functions (ACF) and Partial Autocorrelation Functions (PACF) 

are applied to estimate the values of p and q. The ACF and PACF 

are constructed using actual, difference and transformed data. The 

Box – Jenkins transformation is applied to transform the 

population data in this research. For the selection of the adequate 

model validation statistics are suggested specifically, diagnostic 

checking test and the Bayesian Information Criterion (BIC) and 

Akaike information criterion (AIC) in the view of adequate 

forecasted error tests etc. These statistics are computed for each 

applicant model and the model having smallest values of errors 

with BIC is suggested as an adequate ARIMA model assuming 

that it is to be closest to the unknown certainty by which the series 

is generated [12] After selecting an adequate ARIMA (p, d, q) 

stochastic process and we used to estimate the number population 

in Karachi on the future along with confidence interval. The fitted 

population is plotted on the same graph are depicts to examine the 

model adequacy.  

 

II. IDENTIFY, RESEARCH AND COLLECT IDEA 

Population protuberance for several developing countries 

including Pakistan could be quite a challenging task for the 

demographers typically due to lack of availability of enough 

reliable data. The intense population trends in the city of Karachi 

of the yearly time interval from 1951 to 2015 are discussed in this 

research. The population census data records from 1951 to 1998 

have been taken from Federal Bureau of Statistics Pakistan, the 

missing Data values have been found by using Interpolation 

method. This paper is used ten AR(2) stochastic ARIMA models 

to examine the dynamic of population fluctuations of the Karachi 

city in per year. subsequently, we determined the accuracy of the 

nonseason Holt-Winters algorithm, as well as trend extrapolation 

techniques and ARIMA time series models for population 

forecasting. As a basis of normality check test, we also evaluated 

the accuracy of the ARIMA and Holt-winters algorithm for the 

forecast horizon varied from 5 to 15 years.  

 

1.1.  The Stochastic ARIMA (p, d, q) Modelling  
 

 The Box-Jenkins Auto regressive modeling procedure is 

involved an iterative three-stage process of model selection, 

parameter estimation and model diagnostic checking [2,13,15]. 

The annual population time series in the city of Karachi can be 

modeled as a stochastic process, The procedures of the ARIMA 

(p, d, q) model is expressed the different iterative phases [9,14, 

16]. Box and Jenkins propose the ARIMA methodology are 

involved the four main steps such as: Model identification, Model 

Estimation, Model Diagnostic Checking, fitting, and forecasting 

depict in figure 1, 

 
Figure 1: The Methodology of an ARIMA (p, d, q). 

  

2.1.1 Model Identification 

 
    The primary step in the process of modeling is to check for the 

stationarity of the time series data. This is done by observing the 

graph of the data or autocorrelation and the partial autocorrelation 

functions [9, 11]. 

 

2.1.2 Model Estimation 
 

    The estimation of the ARIMA model’s parameters is acquired 

from the values of the fitted autocorrelation of the differenced of 

time series data values. These initial values are used for fitting of 

least square estimates. In performing it is declared the not all 

parameters in the models are significant. In the mathematical 

appearance, as[9, 11]. 

|
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑠

1.96 ×𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟
| > 1  (5) 

The ratio is suggested annoying a model in which some of the 

parameters are set to zero [22]. The normality test for the residuals, 

are investigate the ACF and PACF residuals plots, residuals 

histogram, residual Probability plots and residual Quintile plots 

etc. As well as the plot of the autocorrelation and partial 

autocorrelation functions of the residuals from the tentatively 

identified ARIMA (p, d , q) models are depicted in result and 

discussion. 

 

2.1.3 Diagnostic Checking  
 

    The diagnostic checking is a procedure that is used to ensure 

residuals of the fitted ARIMA models. The residual is ought to 

fulfill the model assumption of being independent and normally 

distributed. If these assumptions are not fulfilled, then another 

model is chosen for the time series [2, 13, 17, 18]. It is concerned 

through the diagnostic checking test for the fitness of ARIMA 

model. As, the Residual plots of the ACF and PACF, it can appear 

that all points are randomly distributed, and it is completed that 

there is an irregular pattern of the values which is indicated that 

the model is adequate [2,13, 14]. The autocorrelations of the 

individual residuals are very small values and verify at the 

correlation structure of the residuals because of graphs the 

autocorrelation of the significance error bounds of ±2/√n, [6, 13].  

Model Forecasting  

Diagnostic Checking of ARIMA Model

Model Estimation 

Model Identification

No 

Yes 
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There are various diagnostic criteria are used to evaluate the 

accuracy of each model. The R-Square error (coefficient of 

Determination), Mean Square Error (MSE), Mean Absolute Error 

(MAE), Root mean square error (RMSE), Mean absolute 

percentage error (MAPE)  are  employed  to  measure  the  

accuracy of ARIMA model and forecasting error of each model. 

These statistical measures of data sample predictions are 

determined by: 

Mean Square Error:   

  𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦̂𝑡 − 𝑦𝑡)2𝑛

𝑡=1   (6) 

Mean square error is a procedure for estimating the average of the 

squares error,it is compute data points are close a fitted regression 

line . Where  𝑦𝑡̂ , 𝑦𝑡  are actual and predicted population data values 

at time t, n is the number of observation in selected time period. 

Root Mean Square Error:  RMSE  

=   √
∑ (𝑦̂𝑡−𝑦𝑡)2𝑛

𝑡=1

𝑛
                  (7) 

Root Mean Square Error is presently square rooot of the mean 

square error,that is probably the most simply  interpreted 

statistic,RMSE  is the distance on averge of a data point from the 

fitted regression  line. 

Mean Absolute Error:   

   𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂𝑡 − 𝑦𝑡|𝑛

𝑡=1   (8) 

Mean Absolute Error is a measure of  prediction accuracy of a 

forecasting method, how close  forecasts (predictions) are to the 

ultimate outcome of data points.   

Mean Absolute Percentage Error(MAPE):  

MAPE= 
100

n
∑

|𝑦𝑡−𝑦̂𝑡|

|yt|
n
t=1    (9) 

Mean absolute percentage error evaluate the quality of the fit, 

while removing the scale effect and not relatively penalizing 

bigger errors. 𝑦𝑡̂ , 𝑦𝑡  are actual and predicted population data values 

at time t, n is the number of observation in selected time period. 

Forecasted Error (EF): 

  

𝐸𝐹 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠
  (10) 

Forecasted Error is evaluated the difference between the actual 

values and predicted (forecast value) of any time series data. 

Consequence of more diagnostic criteria statistics, such as 

Bayesian Information Criterion [BIC] and Akaike Information 

Criterion for selection of most adequate ARIMA forecasting.  

To evaluate the forecasting adequacy of the AR (p) models for 

nonstationary data also comparison the non- seasonal Holt-

Winters Algorithm forecasting. Forecasting of ARIMA model 

using Bayesian Information Criterion and AIC. 

2.1.4 Forecasting using ARIMA 
 

    As we know, an ARIMA (p, d, q) model is expressed three parts, 

first is order of autoregressive term, second is differencing degree, 

and last part is the order of moving average term. An 

autoregressive   AR(p) is a linear regression of the present value 

of the time series compared to past values of the time series, the 

time series is non-stationary then differencing (d)is a form of 

transformation and a moving average (q) term is a linear 

regression of the present value of the time series in contradiction 

of white noise[3]. We have considered ten ARIMA models for this 

study. Here, the most appropriate ARIMA model for forecasting 

of future time series chosen by Bayesian Information Criterion 

(BIC). Our selected all ARIMA models are fitted to data from the 

actual period and the BIC and AIC value are obtained for each 

ARIMA model fit. The BIC has been generally used for model 

identification and forecasting in time series and Linear exponential 

regression. It can, however, be applied quite widely to any set of 

maximum likelihood-based models [11].             

𝐵𝐼𝐶 = 𝑙𝑛𝜎̂2+
(𝑝+𝑞)ln (ln(𝑛))

𝑛
     (11) 

Where n implies the sample size of the series and σ2 is the mean 

squared error of the ARIMA model fit to the series, p is the order 

of AR parameter while q is the order of MA parameter. The BIC 

is situating, in extent, on the likelihood function, and it is directly 

associated to Akaike information criterion (AIC) [11,14]. While, 

the adequacy of fitting models, it is possible to increase the like-

hood by manipulating the values of parameters, while stack so 

may result in over fitting. The Akaike Information Criterion (AIC) 

are determined the most fitting model by significant value of AIC 

: 

𝐴𝐼𝐶 = 𝑙𝑛𝜎̂2+
2(𝑝+𝑞)

𝑛
 (12) 

Where n implies the sample size of the series and σ2 is the mean 

squared error of the ARIMA model fit to the series, p is the order 

of Auto Regressive (AR) parameter while q is the order of Moving 

Average (MA) parameter. Thus, the most adequate ARIMA model 

shown the smallest AIC value for forecasts were based on that 

model. The mathematical ARIMA model forecasted formula for 

Akaike’s Information Criterion is as follows:                  

-2LL + 2p   (13) 

 Where, LL is representing the log-likelihood value and p is the 

number of parameters fitted in the model. The Holt-Winters 

forecasting is probably to investigate the most adequate forecasts 

for annual population data than ARIMA modelling. 

 

2. The Holt-Winters Algorithm Forecasting 
 

      The Holt-winters algorithm is mainly appropriate for 

stochastic data series that have a non-seasonality and stationery 

for linear trend model and exponential smoothing requiring the 

forecasts in the form [3, 20]   

𝑃𝑛𝑌𝑛+ℎ = 𝑚̂𝑛 ,      ℎ = 1, 2, …. (14) 

then, mn  is constant and the exponential smoothing forecast of  

𝑌𝑛+ℎ  based on the observed values. The simple clue is to permit 

for a time- varying trend via requiring the forecasts to have the 

mathematical expression [3]. 

𝑃𝑡 𝑌𝑡+ℎ = 𝑎̇̂ 𝑡 + 𝑏̇̂ 𝑡ℎ,   ℎ = 1,2,3, ..    (15) 

Where,      and    is the estimated level and slope estimated 

trend at time t. The Holt-Winters proposed method for obtaining 

the quantities      and  in above mention (1). Representing in 

the 𝑌̂𝑛+1 ,one-step forecast 𝑃𝑛𝑌𝑛+1, So we have mathematical 

form: 

𝑌̂𝑛+1 = 𝑎̂𝑛 + 𝑏̂𝑛  (16) 

Similarly, the exponential smoothing, we now take the estimated 

level at time n+1 is the linear form of the observed and forecast 

values at time 𝑛 + 1, i.e. 

𝑎̂𝑛+1 = 𝛼𝑌̂𝑛+1 + (1 + 𝛼) ( 𝑎̂𝑛 + 𝑏̂𝑛 ) (17) 

Then the estimated slop at time n+1 as linear form of  𝑎̂𝑛+1 − 𝑎̂𝑛  

and   the estimated value of slope 𝑏̂𝑛  at time n. Thus, 

tâ tb̂

tâ tb̂
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𝑏̂𝑛+1 = 𝛽(𝑎̂𝑛+1 − 𝑎̂𝑛) +(1 − 𝛽)𝑏̂𝑛             

(18) 

By solving equation (17) and (18). we require the initial 

conditions. The natural selection is to procedure   

          𝑎̂2 = 𝑌2     and             𝑏̂2 = 𝑌2 − 𝑌1     

Then the equation (17) and (18) can be solved sequentially for   𝑎̂𝑖   

and 𝑏̂𝑖, i  = 3...,n, and the forecasts (19) then have the form: 

            (19) 

Forecasting values are depending in the (17) and (19) the 

smoothing parameters α and β. These can also give arbitrarily 

values (between 0 and 1). Consequently, one-step sum of squares 

minimize errors are obtained  

Forecasted sum of squares error  

= ∑ (𝑦𝑖 − 𝑝𝑖−1
𝑛
𝑖−3 𝑦𝑖)2            (20) 

 
3.1 The Holt-Winters and ARIMA Forecasting  
 

    The Holt-winters (HWS) algorithm is one of the forecasting 

techniques, which is suited for series that have no seasonality of 

ARIMA models. This algorithm has two main steps, one-step 

HWS algorithm is handle time series data in which there are both 

trend and exponential smoothing variation ,second –step of 

algorithm are  generate forecasts of  time series data containing a 

trend plus noise[19,20]. 

 
As we know, the non-seasonal Holt-Winters forecasted is 

expressed: 

   Ht = αAt + (1 - α)(Ht-1 + Tt-1)      0 ≤ α ≤ 1           (21) 

   Tt = γ(Ht - Ht-1) + (1 - γ)Tt-1      0 ≤  γ ≤ 1          (22) 

Where, smoothed value and constant is Ht, α and γ, the trend value 

and actual value is Tt and At of the time series. For this research, 

Holt-winter Forecasted with ARIMA, α and γ are calculated in 

minimizing the squared prediction error and the initial values for 

H and T are:  

H3 = A2     (23) 

T3 = Y2 - Y1     (24) 

The Holt-winters exponential smoothing by parameter in 

obtained: 

𝑚̂𝑡 = 𝛼𝑋𝑡+ (1- 𝛼𝑚̂𝑡−1 )  𝑡 = 2, … … … , 𝑛,       (25) 

𝑃𝑛𝑌𝑛+ℎ = 𝑚̂𝑛 ,      ℎ = 1, 2, ….     (26) 

The Holt-winters and ARIMA content the Forecasts relations in 

mathematical expression:  

𝑃𝑛𝑌𝑛+1 = 𝑌𝑛 − (1 − 𝛼) ( 𝑌𝑛 − 𝑌𝑛−1 𝑌𝑛 ),  𝑛 ≥ 2 

    (27) 

𝑌𝑡 = 𝑌𝑡−1 + 𝑍𝑡 − (1 − 𝛼)𝑍𝑡−1 , {𝑍𝑡 } ~ 𝑊𝑁 (0, 𝜎 
2).  

     

(28) 

The exponential smoothing parameter α for forecasting can be 

interpretation as fitting an associate of an ARIMA model with two-

parameters (28) to the data and using the large-sample forecast set 

in  𝑃0𝑌1 = 𝑌1 . 

Similarly, it can be shown that Holt–Winters forecasting as fitting 

value of the ARIMA model with three-parameters 

  (1 − 𝛽)2Y𝑡 = 𝑍𝑡 − (2 − 𝛼 − 𝛼𝛽)𝑍𝑡−1 + (1 − 𝛼) 𝑍𝑡−2  

  (29) 

The Holt-Winters forecasting method is determined to exponential 

smoothing in any time series data. Here, we have also compared 

the Holt-winters Forecasted results with Extrapolation linear and 

exponential trend Forecasting. 

 

3.2 Extrapolation Trend Forecasting 
 

       For the more verification of Holt-winters (HWS) algorithm, 

we have considered the linear and exponential extrapolation 

forecasting. The linear approach accepts that the population will 

increase or decrease in the upcoming time interval. The 

exponential technique obtains that the population will raise or 

decline exponentially in imminent era as in the present interval. In 

mathematical terms, the linear and exponential techniques can be 

expressed  

Linear Forecasting:      

FLy = Pi + (l / A) (Pi - Pf )                 (30) 

Exponential Forecasting: 

 FEy = Pi exp [(ln (Pi / Pf  ) / A) l]  (31) 

where l is the length of the forecast interval, A is the length of the 

actual time interval, FLy is the forecasted year for linear forecasted 

value, FEy is the forecasted year for exponential forecasted value, 

Pi is the population in the initial year and Pf  is the population of 

the final year. 

 

3.3 Normality Check Test for forecasting  
 

    When a model is selected a normality check test are finalized to 

explore that the model is adequate for forecasting. The Geary’s α 

statistic test is indicated that the consistent residuals cannot follow 

a normal distribution and later the described confidence intervals 

did not signify the actual values [20, 21].  

 

The mathematical expression is given below:     

  

∝=

1
𝑛 ∑ |𝑥𝑖−𝑥̅|𝑛

𝑖=1
⁄

√
1

𝑛 ∑ (𝑥𝑖−𝑥̅)2𝑛
𝑖=1

⁄
  (32) 

where n is the residuals in the forecasted series being modeled, Xi 

the value of residual i and X is the mean value of the residuals.  

Mean Absolute Percentage Error (MAPE) is computed by dividing 

the difference between actual value At and forecasted value Ft 

(known as the forecasting error) by the actual value At, where i is 

the series, t is the forecast period and m is the forecasting method.  

MAPE= 
100

n
∑

|𝐴𝑡−𝐹̂𝑡|

|At|
n
t=1   (33) 

Mean absolute percentage error evaluate the quality of the fit, 

while removing the scale effect and not relatively penalizing 

bigger errors. Since above mention diagnostic checking for 

ARIMA models and normality check tests, we have explored the 

adequate ARIMA model, afterwards, by comparing the ARIMA, 

Holt-winters and Extrapolation Trend forecasting methods and 

,....3,2,1   ,ˆˆ =+=+ hhbaYP nnhnn

 

 

                                                                               

{Yt}                                       {St}                            {Zt} 

Trend   
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AR (p) filter 
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Series 

White 

 noise Data 
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one best fitted forecasts are calculated and suggest for population 

forecasting of the city of Karachi. 

III. WRITE DOWN YOUR STUDIES AND FINDINGS 

Having discussed some basic concepts and hypothetical basis of 

time series that are enable us to analyze the data. We now present 

a step-by-step analysis of our population data time series. In 

Figure.2 illustrates the population trend of the natural logarithm 

population of Karachi from 1951 to 2015, respectively. 

 

 
Figure 2: The Logarithmic population time series plot of Karachi 

during 1951-2015 

In Figure 3 and 4 depicts the trend of the population after taking 

the first and second differencing of the natural logarithm of the 

population time series data. Certainly, the first differencing plot of 

the trend of actual population is unusual as the first difference plot 

of trend of logarithmic population except the second (2nd) 

differencing plot is approximately stationary. Thus, the 

2nddifferenced logarithmic population time series is being for 

onward analysis.  

 
Figure 3: Logarithmic Population Trend time series plot of 

Karachi after 1st   Differencing 

 
Figure 4: Logarithmic Population Trend time series plot of 

Karachi after 2nd Differencing 

In the figure.5 and 6 depicts of ACF and PACF plots of the second 

(2nd ) difference of logarithm of the population are shown all the 

points  at different lags are within the 95% confidence limits, it is 

an indication that the selected skimping model might be without 

moving average components. In PACF graph are depicts all points 

at different lags of the figure are within the 95% confidence limits 

except two points, one at lag 1 and second at lag 5.  

 
Figure5: ACF Plot of differencing logarithmic Population 

 
Figure: 6 PACF Plot of differencing logarithmic Population 

 

The point at lag 1 is clearly out of the positive limit whereas spike 

at lag 1 is close to the negative limit; other spikes at different lags 

in PACFs are clearly within the 95 % limits. 

 

Table 1: Auto correlation and PACF of 2nd difference for 

logarithm population 

LAG ACF 

ACF 

LBQ1 PACF 

PACF 

T-Statistics 
T-

Statistics 

1 0.486 3.891 15.865 0.486 3.891 

2 0.185 1.222 18.208 -0.067 -0.536 

3 0.226 1.455 21.740 0.213 1.707 

4 0.054 0.336 21.944 -0.189 -1.515 

5 0.099 0.619 22.651 0.214 1.716 

6 0.221 1.366 26.195 0.070 0.563 

7 0.070 0.423 26.560 -0.082 -0.654 

8 
-

0.102 
-0.612 27.345 -0.188 -1.501 

9 
-

0.092 
-0.548 27.992 -0.003 -0.027 

10 
-

0.164 
-0.975 30.101 -0.130 -1.038 
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Table 1 are indicated values of autocorrelation coefficients 

(ACF) and partial autocorrelation coefficients (PACF), 

Students t- statistics, Ljung Box statistics and P-values 

corresponding to the different lags from 1 to 10 of 2nddifference 

of natural logarithmic population series. It is concluded that all 

the autocorrelation coefficients (ACF) and partial 

autocorrelation coefficients (PACF) are perform significantly 

from zero and consequently the 2nddifference of the logarithm 

of the population series appears to be stationary. The 

correlogram is that it helps in determining the p, q values of the 

ARIMA model. The ACF and PACF plot of second (2nd) 

differenced of logarithm population series is denoted by yt for 

yt= 1,2……………66 ,where Yt =∇zt .It is observed that ACF 

and PACF yt are described by correlations to turn in symbol and 

which tend to damp out with increasing lag. As a result, the 

autoregressive moving average of order (p, d, q) are proposed 

since both the ACF and PACF of the yt appear to be tailing off. 

Thus, we have selected  ten  ARIMA model is  parameter values 

for different orders of autoregressive (AR), auto regressive 

integrated moving average (ARIMA) models e.g. AR(1), 

AR(2), MA(1), MA(2), ARIMA(1,2,1), ARIMA(1,2,2), 

ARIMA(2,2,1), ARIMA(2,2,2), ARIMA(3,2,1), 

ARIMA(3,2,2), ARIMA(4,2,1), ARIMA(4,2,2), 

ARIMA(5,2,1), and ARIMA(5,2,2) (p, d, q) models of 

population data  by  d= 2,  differenced  stochastic process  and 

it to most appropriated models are preferred to non-seasonal 

Holt–Winters algorithm forecast the population in Karachi  on  

the  future.  

According to the ARIMA identification and estimation 

checking, if our selected more than one model provides similar 

information, the insignificancy of model is shown minimum 

number of parameters for improve the estimation and 

interpretation of parameters. If (P-value ≤0.05) corresponding 

to an estimate in the ARIMA model, the hypothesis that the 

parameter equal to zero is rejected on the further proviso (P-

value ≥0.05) consequent to an estimate in the model, the 

hypothesis that the parameter equal to zero is not rejected which 

suggested that the explanatory variable should not be consist of 

in the model. As a result, in the perspective of all diagnostic 

checking, Parameter estimates and forecasted error test the 

proposed appropriate model is ARIMA (1,2, 1) model is 

identified. The parameters of the fitted model are estimated 

using parameters descriptive values Hessian error, Asymptotic 

error with 95 % confidence interval of lower and upper bounds 

statistic in table 2  

Table 2: The Parameters descriptive statistics of most adequate ARIMA (1,2,1) Model 

Also, the ACF, PACF and p-values  of the Durbin Watson  

statistic  for the residuals  of the  ARIMA(1,2,1) model within the 

confidence interval, least value of error so we have no evidence 

to reject the model. The residuals plot of the autocorrelations of 

ARIMA (1,2,1) model, we see that the autocorrelations values are 

statistically equal to zero. The appropriateness of each AR (p) 

models can be tested by using the diagnostic checking namely R– 

square, Mean Square Error (MSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE) and Final Prediction Error are shown 

in table 3.  

Table 3: The Selected ARIMA (p, d, q) model and Diagnostic Test 

Diagnostic 

checking 
ARIMA (p, d, q) 

Criterion (5,2,2) (5,2,1) (4,2,2) (4,2,1) (3,2,2) (3,2,1) (2,2,2) (2,2,1) (1,2,2) (1,2,1) 

R-Square 0.941 0.939 0.951 0.936 0.945 0.930 0.970 0.981 0.972 0.990 

SSE 0.010 0.010 0.010 0.010 0.099 0.010 0.011 0.011 0.015 0.010 

MSE 0.016 0.019 0. 016 0. 013 0.016 0.016 0.002 0.017 0.018 0.013 

Variance 0.015 0.000 0.000 0.000 0.010 0.010 0. 019 0. 019 0. 016 0.015 

MAPE 0.158 0.140 0.200 0.180 0.165 0.188 0.198 0.160 0.170 0.120 

EF 0.018 0.019 0.019 0.019 0.018 0.009 0.015 0.019 0.010 0.010 

Durbin 

Watson 
2.122 1.996 1.925 1.849 1.804 1.759 1.942 1.980 2.134 1.680 

Log- 

likelihood 
-375.4 -375.4 -375.4 -375.4 -375.6 -375.2 -373.7 -373.0 -373.0 -372.9 

AIC -359.4 -361.4 -361.4 -363.4 -363.6 -365.2 -366.9 -365.0 -363.7 -365.0 

BIC -342.1 -346.3 -346.3 -350.4 -350.6 -354.4 -360.5 -356.4 -352.9 -356.3 

HIC -356.8 -359.4 -359.4 -361.9 -362.1 -364.2 -366.5 -364.3 -362.7 -364.3 

AIC/BIC 1.050 1.044 1.044 1.037 1.037 1.030 1.018 1.024 1.031 1.024 

HIC/BIC 1.043 1.038 1.038 1.033 1.033 1.028 1.017 1.022 1.028 1.022 

Parameter Value 

Hessian 

Standard 

error 

Lower 

Bound 

Upper 

bound 

(95%) 

Asymptotic 

standard error 

Lower 

bound 

(95%) 

Upper 

bound 

(95%) 

AR(1) -0.26 0.144 -0.55 0.02 0.13 -0.518 -0.01 

MA(1) -0.88 0.099 -1.07 -0.682 0.065 -1.004 -0.75 
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The Bayesian Information Criteria (BIC) and Akaike Information 

Criterion (AIC) are established that the model is statistically 

significant, appropriate, and adequate.  Moreover, the low value 

of MSE and RMSE indicates a good fit for the ARIMA (1,2,1) 

model. As well, the high value of the R-Square indicates a perfect 

prediction over the mean. Investigation are showed that the 

ARIMA (1, 2, 1) model is superior to the other selected models 

having the least BIC value specifically AIC, Our  result 

represents the least value of REMSE, highest value of Log-

Likelihood and smaller values for HIC: BIC ratio and greater 

values for the ratio AIC: BIC for ARIMA (1, 2, 1) specifically 

with respect to the selected ten ARIMA models depicts are 

declared as adequate models which is inventory at the table 

3.Meanwhile, the population time series data used in this research 

did not demonstrate any type of seasonality, the population data 

seems to be non-seasonality, seasonal forecasting are not be 

discussed in this paper.  

  we also evaluated the accuracy of the population forecasting 

may be affected by the move from ARIMA modelling to Holt-

Winters algorithm and extrapolation linear and exponential trend 

forecasting methods in the basis of normality check test. we 

considered the linear and exponential extrapolation equation (30 

and 31) for forecasting of population time periods series (for 5- 

years, 10-year and 15-year) form as Linear   FL05   = 6.0560 + 

(0.076923) (1.307111),  FL10 = 6.0560 + (0.1428571) (1.307111)  

and   FL15 = 6.0560 + (0.2) (1.307111) ,similarly exponential 

forecasting form as  FE5= (6.0560 ) exp [(ln(0.822585) / 65) 5] 

,FE10= (6.0560)  exp [(ln(0.822585) / 70) 10] and  FE15= (6.0560)  

exp [(ln(0.822585) / 75) 15].    

 

Our result shown that accuracy of ARIMA (1,2,1) model and 

Holt-Winters is dispirited to exponential extrapolation trend 

forecasting methods (table 4). The forecasted Populations for the 

years 2020, 2025, 2030 are also depicts in table 5.  

 

Table 4: The Most Appropriate Models forecasts by Normality test 

Model Time Interval Forecasted Year 
Geary’s α 

statistic test 
MAPE SSE RMSE MPE 

ARIMA (1,2,1) 

1951-2015 2030 

0.95 0.15 0.011 0.013 0.015 

Holt-Winters 0.979 0.16 0.014 0.015 0.018 

Linear 0.861 0.46 0.034 0.079 0.047 

Exponential 0.861 0.56 0.043 0.095 0.055 

        

Table 5: Forecasted Populations for the Years   2020, 2025, 2030 

Model 
2020 2025 2030 

(log Population) (Log Population) (Log Population) 

Linear 6.1565 6.2427 6.3174 

Exponential 6.1476 6.2273 6.2972 

ARIMA(1,2,1) 7.465 7.566 7.667 

Holt-winter 7.47 7.577 7.684 

 

the normality check test as Geary’s α statistic test, Sample 

Kurtosis b2 statistic and Mean Absolute Percentage Error values 

for the ARIMA and Holt-Winters models are very close to the 

MAPE values, Geary’s α statistic values and Sample Kurtosis b2 

statistic values are shown that the ARIMA and Holt-Winters 

forecasted residuals values do not appear normal distribution.   

In fact, the differences in MAPE values for ARIMA and Holt–

Winters algorithm forecasts fixes not exceed 5, percentage 

values, then, as a comparison of all above methods, also ARIMA 

and Holt-Winters forecasted normality MAPE values are 

comparatively small, the ARIMA (1,2,1) forecast seems to be the 

most accurate for the period of 5,10 and 15 years ( 2020,2025 and 

2030) estimated time intervals and Holt-Winters algorithm 

forecasted appearances to be 5 to 15 years estimated time 

intervals(table 6 and figure 7).  

 

Table 6: Holt Winter forecasting for the Years 2016-2030 

Time Interval Prediction sqrt(MSE) Lower Upper 

2016 7.385 0.014 7.356 7.413 

2017 7.406 0.021 7.364 7.448 

.2018 7.427 0.029 7.370 7.485 

2019 7.449 0.038 7.374 7.524 

2020 7.470 0.048 7.376 7.564 

2021 7.492 0.059 7.377 7.607 

2022 7.513 0.070 7.376 7.650 

2023 7.534 0.082 7.374 7.695 
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2024 7.556 0.094 7.371 7.741 

2025 7.577 0.108 7.366 7.788 

2026 7.599 0.121 7.361 7.836 

2027 7.620 0.136 7.354 7.886 

2028 7.641 0.150 7.347 7.936 

2029 7.663 0.166 7.338 7.987 

2030 7.684 0.181 7.329 8.039 

 

Figure: 7 ARIMA (1,2,1) and Holt-Winters forecasts 

population from 1951 to 2030.  

 

These forecasting methods are rectifying change from Holt-

Winters to ARIMA modelling. These forecasting methods are 

rectifying transformation from Holt-Winters to ARIMA 

modelling. 

       (1 − 0.400)2Y𝑡 = 𝑍𝑡 − (2 − 0.780 − 0.312)𝑍𝑡−1 +
(1 − 0.780) 𝑍𝑡−2  

subsequently, ARIMA (1,2,1) is appear most appropriate 

forecasts for the population of the city of Karachi for the next 

15 years. The ARIMA Forecasting based on the fitted model 

are calculated up to lead time of 14, and the one-step 

forecasting, and the 95% confidence limits are presented in 

table.7 and figure.8.  

 

 
 

Figure 8 The population forecast from 1951 to 2030 by 

ARIMA (1,2,1)

 

Table: 7 One-step forecast for the Years 2016-2030 by ARIMA (1, 2, 1) Model 

Lead time Forecast 95% Lower Limit 95% Upper Limit 

2016 7.4032 7.356 7.413 

2017 7.4044 7.3791 7.4298 

2018 7.4247 7.3912 7.4583 

2019 7.4449 7.4022 7.4876 

2020 7.4651 7.4141 7.5161 

2021 7.4853 7.426 7.5447 

2022 7.5056 7.4379 7.5731 

2023 7.5257 7.4498 7.6017 

2024 7.5459 7.4615 7.6303 

2025 7.5661 7.4731 7.6591 

2026 7.5863 7.4846 7.688 

2027 7.6065 7.496 7.717 

2028 7.6267 7.5072 7.7462 

2029 7.6469 7.5182 7.7756 

2030 7.667 7.5291 7.8051 

The lower values and upper values stand for the lower bounds 

and upper bounds of the Confidence Interval (C.I). There is a 

95% chance that the forecasted values will fall into this range. 

The actual and forecasted values are reasonably close, which 

confirms that our adequate ARIMA should be superior for 

forecasting. 

IV. CONCLUSION 

While ARIMA models are usually used only in time series 

analysis, it is concluded that the ARIMA (1, 2, 1) is a fitted and 

most appropriate model out of the other fitted AR (2) ARIMA 

models. An ARIMA (1,2,1) model had the least BIC value of 

−356.3269 MAPE of 0.1509, RMSE of 0.012435 and R-square 

of 0.9891 similarly, although this model is the most appropriate 

model based on the BIC is as well as the entire Diagnostic Check 

test. Among the most adequate ARIMA model, Holt-Winter 

algorithm and extrapolation trend Forecast methods are used to 

forecast population timeseries, thus normality check test are 

suggest to differences in MAPE values are relatively small, the 

Holt-Winters and ARIMA (1,2,1) model seems to be the most 

accurate model for the 15-year forecast period and the ARIMA 
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(1,2,1) is the most accurate model for the specific years i.e.2015 

to 2030,2020, 2025, and 2030. The city of Karachi is being the 

world’s eight urban populated city has a logarithm population of 

7.33 in 2015. It is also testimony that population would be 7.656 

by 2030 which is almost same to our forecasted population. In 

briefly, the estimates provided in table 1. 

using ARIMA (1,2,1) are close to other researcher’s finding and 

are equally important for Government of Pakistan, Non-

Government Organizations as well as insurances companies, 

Health Department for future planning and projects. 

Karachi is the most populous city in Pakistan, and it has a most 

important seaport and financial center. The population density is 

about 6,000 per square kilometers (15,500 per square miles) and 

the World's third largest city population. The city of Karachi has 

tackled various problems by uncontrollable human population, 

urban management, and planning. The Model results are helpful 

for future planning and judicious distribution of resources for 

development. The results of this study will also prove to be useful 

for future researchers working on epidemiology and oncology 

field to improve and rectify the current pandemic COVID-19 

disease in Karachi Region. We will further discuss and elaborate 

it in our next communication. 
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