## **Strong Split Domination Polynomial of Cycles**

### E. Selvi<sup>1\*</sup> and R. Kala<sup>2</sup>

Department of Mathematics
Manonmaniam Sundaranar University
Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India
email: <sup>1</sup>selvie173@gmail.com, <sup>2</sup>karthipyi91@yahoo.co.in **Abstract** 

Let G = (V(G), E(G)) be a simple graph. A dominating set  $D \subseteq V(G)$  is a strong split dominating set if the induced subgraph  $\langle V - D \rangle$  is totally disconnected with at least two vertices. Let  $\mathcal{D}_{ss}(G,i)$  be the family of strong split dominating sets of G of cardinality i and  $|\mathcal{D}_{ss}(G,i)| = d_{ss}(G,i)$ . We define the strong split domination polynomial of a graph G of order n as the polynomial  $D_{ss}(G,x) = \sum_{i=\gamma_{ss}(G)}^{n-2} d_{ss}(G,i)x^i$ . In this paper, we determine the strong split domination polynomial of cycles and obtain some of its properties.

**Keywords and Phrases:** Strong split dominating set, Strong split domination polynomial.

**2010 Mathematics Subject Classification:** 05C69

#### 1. Introduction

Let G = (V, E) be a simple graph with vertex set V = V(G) and edge set E = E(G). A set  $D \subseteq V$  is a dominating set if every vertex in V - D is adjacent to a vertex in D. The domination number  $\gamma(G)$  is the minimum cardinality of a dominating set in G. A dominating set with cardinality  $\gamma(G)$  is called a  $\gamma$ -set. For a detailed treatment of this parameter the reader is referred to [2]. In [1], S Alikhani and Y H Peng has found the recursive relation for the domination polynomial of cycles. Now in the same way we find the recursive relation for the strong split domination polynomial of cycles.

A dominating set  $D \subseteq V(G)$  is a strong split dominating set if the induced subgraph  $\langle V - D \rangle$  is totally disconnected with at least two vertices. The strong split domination number is the minimum size of a strong split dominating set of G and is denoted by  $\gamma_{ss}(G)$ . Strong split domination in graph was introduced by Kulli and Janakiraman in [3]. For more details on strong split domination we refer [4]. It is immediate that for any cycle  $C_n$ ,  $\gamma_{ss}(C_n) = \left\lceil \frac{n}{2} \right\rceil$  [4].

**Definition 1.1** [5] Let  $\mathcal{D}_{ss}(G,i)$  be the collection of strong split dominating sets of G of cardinality i and  $|\mathcal{D}_{ss}(G,i)| = d_{ss}(G,i)$ . The strong split domination polynomial of G is defined as  $D_{ss}(G,x) = \sum_{i=\gamma_{ss}(G)}^{n-2} d_{ss}(G,i)x^i$ .

## 2. Construction of Strong Split Dominating Sets of Cycles

A Cycle is a graph whose vertices can be listed in the order  $\{u_1, u_2, ..., u_n\}$  such that the edges are  $\{(u_1, u_2), (u_2, u_3), ..., (u_{n-1}, u_n), (u_n, u_1)\}$ . Let  $\mathcal{D}_{ss}(C_n, i)$  be the collection of strong split dominating sets of  $C_n$  with cardinality i.

**Observation 2.1** For any cycle  $C_n$ ,

1. 
$$\mathcal{D}_{SS}(C_n, i) = \emptyset$$
 if and only if  $i > n-2$  or  $i < \left\lceil \frac{n}{2} \right\rceil$ 

2. 
$$\mathcal{D}_{ss}(C_n, i) \neq \emptyset$$
 if and only if  $\left\lceil \frac{n}{2} \right\rceil < i < n-2$ 

3. To find a strong split domination polynomial of  $C_n$  with cardinality i, it is enough to consider  $\mathcal{D}_{ss}(C_{n-1}, i-1)$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1)$ . Thus we have to consider four combinations of whether these two collections are empty or not.

**Lemma 2.1** If  $\mathcal{D}_{ss}(C_{n-1}, i-1) = \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) = \emptyset$ , then  $\mathcal{D}_{ss}(C_n, i) = \emptyset$ .

**Lemma 2.2** Suppose  $\mathcal{D}_{ss}(C_n, i) \neq \emptyset$ . Then

- 1.  $\mathcal{D}_{ss}(C_{n-1}, i-1) = \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) \neq \emptyset$  if and only if n = 2k and i = k for some  $k \in \mathbb{N}$ .
- **2.**  $\mathcal{D}_{SS}(C_{n-1}, i-1) \neq \emptyset$  and  $\mathcal{D}_{SS}(C_{n-2}, i-1) = \emptyset$  if and only if i = n-2.
- 3.  $\mathcal{D}_{ss}(C_{n-1}, i-1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) \neq \emptyset$  if and only if  $\left\lceil \frac{n-1}{2} \right\rceil + 1 \leq i \leq n-2$ .

**Proof.** 1. Assume that  $\mathcal{D}_{ss}(C_{n-1},i-1)=\emptyset$  and  $\mathcal{D}_{ss}(C_{n-2},i-1)\neq\emptyset$ . Since  $\mathcal{D}_{ss}(C_{n-1},i-1)=\emptyset$  by Observation 2.1, i-1>n-3 or  $i-1<\left\lceil\frac{n-1}{2}\right\rceil$ . If i-1>n-3, then i>n-2 and by Observation 2.1,  $\mathcal{D}_{ss}(C_n,i)=\emptyset$  a contradiction. So  $i<\left\lceil\frac{n-1}{2}\right\rceil+1$  and since  $\mathcal{D}_{ss}(C_n,i)\neq\emptyset$  together with  $\left\lceil\frac{n}{2}\right\rceil\leq i<\left\lceil\frac{n-1}{2}\right\rceil+1$ , we have n=2k and i=k for some  $k\in\mathbb{N}$ .

Conversely, if n = 2k and i = k for some  $k \in \mathbb{N}$ , then by Observation 2.1,  $\mathcal{D}_{ss}(C_{n-1}, i - 1) = \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i - 1) \neq \emptyset$ .

2. Assume that  $\mathcal{D}_{ss}(C_{n-1},i-1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2},i-1) = \emptyset$ . Since  $\mathcal{D}_{ss}(C_{n-2},i-1) = \emptyset$ , by Observation 2.1, i-1>n-4 or  $i-1<\left\lceil\frac{n-2}{2}\right\rceil$ . If  $i-1<\left\lceil\frac{n-2}{2}\right\rceil$ , then  $i-1<\left\lceil\frac{n-1}{2}\right\rceil$  and hence  $\mathcal{D}_{ss}(C_{n-1},i-1) = \emptyset$ , a contradiction. So i>n-3 and also since  $\mathcal{D}_{ss}(C_{n-1},i-1) \neq \emptyset$ ,  $i-1\leq n-3$ . Therefore, i=n-2.

Conversely, if i = n - 2, then by Observation 2.1,  $\mathcal{D}_{ss}(C_{n-1}, i - 1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i - 1) = \emptyset$ .

3. Let us assume that  $\mathcal{D}_{ss}(C_{n-1},i-1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2},i-1) \neq \emptyset$ . Then by Observation 2.1,  $\left\lceil \frac{n-1}{2} \right\rceil \leq i-1 \leq n-3$  and  $\left\lceil \frac{n-2}{2} \right\rceil \leq i-1 \leq n-4$ . So,  $\left\lceil \frac{n-1}{2} \right\rceil \leq i-1 \leq n-4$  and hence  $\left\lceil \frac{n-1}{2} \right\rceil + 1 \leq i \leq n-2$ .

Conversely, if  $\left\lceil \frac{n-1}{2} \right\rceil + 1 \le i \le n-2$ , then by Observation 2.1,  $\mathcal{D}_{ss}(\mathcal{C}_{n-1}, i-1) \ne \emptyset$  and  $\mathcal{D}_{ss}(\mathcal{C}_{n-2}, i-1) \ne \emptyset$ .

# **Theorem 2.1** Let $n \ge 6$ and $i \ge \left\lceil \frac{n}{2} \right\rceil$

- 1. If  $\mathcal{D}_{ss}(C_{n-1}, i-1) = \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) \neq \emptyset$ , then  $\mathcal{D}_{ss}(C_n, i) = \{\{1,3,5,...,-1\}, \{2,4,6,...,n\}\}.$
- 2. If  $\mathcal{D}_{ss}(C_{n-1}, i-1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) = \emptyset$ , then  $\mathcal{D}_{ss}(C_n, i) = S \cup \{\{1, 2, 3, ..., n\} \{x, y\}/x \text{ and } y \text{ are not adjacent}\}$  where  $S = \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(C_{n-1}, n-3)\}$ .
- 3. If  $\mathcal{D}_{ss}(C_{n-1}, i-1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) \neq \emptyset$ , then  $\mathcal{D}_{ss}(C_n, i) = S_1 \cup S_2 \cup S_3$ , where  $S_1 = \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(C_{n-1}, i-1)\}$  and  $S_2 = \{X_2 \cup \{n-1\}/X_2 \in \mathcal{D}_{ss}(C_{n-2}, i-1)\}$  and  $S_3 = \{X_3 \cup \{n\}/X_3 \in \mathcal{D}_{ss}(C_{n-2}, i-1) \mathcal{D}_{ss}(C_{n-1}, i-1)\}$

**Proof.** 1. Let  $\mathcal{D}_{ss}(C_{n-1}, i-1) = \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) \neq \emptyset$ . By Lemma 2.2(1) n = 2k and i = k for some  $k \in \mathbb{N}$ . Then  $\mathcal{D}_{ss}(C_n, i) = \mathcal{D}_{ss}(C_{2k}, k) = \{\{1, 3, 5, ..., -1\}, \{2, 4, 6, ..., n\}\}.$ 

- 2. Let  $\mathcal{D}_{ss}(C_{n-1},i-1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2},i-1) = \emptyset$ . By Lemma 2.2(2), i=n-2. Therefore  $\{\{1,2,3,\ldots,n\}-\{x,y\}/x \ and \ y \ are \ not \ adjacent\}$ , be the collection of strong split dominating sets of  $C_n$  of cardinality n-2 and  $S=\{X_1\cup\{n\}/X_1\in\mathcal{D}_{ss}(C_{n-1},n-3)\}$ .
- 3. Let  $\mathcal{D}_{ss}(C_{n-1}, i-1) \neq \emptyset$  and  $\mathcal{D}_{ss}(C_{n-2}, i-1) \neq \emptyset$  ad assume that  $X_1 \in \mathcal{D}_{ss}(C_{n-1}, i-1)$ . Then  $X_1 \cup \{n\} \in \mathcal{D}_{ss}(C_n, i)$ . Take  $S_1 = \{X_1 \cup \{n\}/X_1 \in \mathcal{D}_{ss}(C_{n-1}, i-1)\}$ . Then  $S_1 \subseteq \mathcal{D}_{ss}(C_n, i)$ .

Let us assume that  $X_2 \in \mathcal{D}_{ss}(C_{n-2}, i-1)$ . Then  $X_2 \cup \{n-1\} \in \mathcal{D}_{ss}(C_n, i)$ . Take  $S_2 = \{X_2 \cup \{n-1\}/X_2 \in \mathcal{D}_{ss}(C_{n-2}, i-1)\}$ . Then  $S_2 \subseteq \mathcal{D}_{ss}(C_n, i)$ . Thus  $S_1 \cup S_2 \subseteq \mathcal{D}_{ss}(C_n, i)$ .

Now let us assume that  $X_3 \in \mathcal{D}_{ss}(C_{n-2}, i-1) - \mathcal{D}_{ss}(C_{n-1}, i-1)$ . Then  $X_3 \cup \{n\} \in \mathcal{D}_{ss}(C_n, i)$ . Take  $S_3 = \{X_3 \cup \{n\}/X_3 \in \mathcal{D}_{ss}(C_{n-2}, i-1) - \mathcal{D}_{ss}(C_{n-1}, i-1)\}$ . Then  $S_3 \subseteq \mathcal{D}_{ss}(C_n, i)$ . Thus  $S_1 \cup S_2 \cup S_3 \subseteq \mathcal{D}_{ss}(C_n, i)$ .

Now suppose that  $Z \in \mathcal{D}_{ss}(C_n, i)$ . Then  $n \in Z$  or  $n \notin Z$ .

If  $n \in \mathbb{Z}$ , then there exist  $X_1 \in \mathcal{D}_{ss}(\mathcal{C}_{n-1}, i-1)$  such that  $Z = X_1 \cup \{n\}$  and  $X_3 \in \mathcal{D}_{ss}(\mathcal{C}_{n-2}, i-1) - \mathcal{D}_{ss}(\mathcal{C}_{n-1}, i-1)$  such that  $Z = X_3 \cup \{n\}$ . Hence  $Z \in \mathcal{S}_1 \cup \mathcal{S}_3$ . If  $n \notin \mathcal{S}_3$  is the following problem of  $\mathcal{S}_3$  is the following problem of  $\mathcal{S}_3$ .

Z, then  $n-1 \in Z$  otherwise  $Z \notin \mathcal{D}_{ss}(C_n,i)$ . If  $n-1 \in Z$ , then there exist  $X_2 \in \mathcal{D}_{ss}(C_{n-2},i-1)$  such that  $X_2 \cup \{n-1\} \in Z$ . Thus  $Z \in \mathcal{S}_2$ . Therefore  $\mathcal{D}_{ss}(C_n,i) \subseteq \mathcal{S}_1 \cup \mathcal{S}_2 \cup \mathcal{S}_3$ . Hence the Proof.

### 3. Strong Split Domination Polynomial of Cycles

In this section we determine the strong split domination Polynomial of Cycles and some of its properties.

**Definition 3.1** Let  $\mathcal{D}_{ss}(C_n, i)$  be the collection of strong split dominating sets of  $C_n$  of cardinality i and  $|\mathcal{D}_{ss}(C_n, i)| = d_{ss}(C_n, i)$ . Then the strong split domination polynomial of cycle is defined as  $D_{ss}(C_n, x) = \sum_{i=\lceil n \rceil}^{n-2} d_{ss}(C_n, i) x^i$ .

**Theorem 3.1** If  $\mathcal{D}_{ss}(C_n, i)$  is the collection of strong split dominating set of cardinality i of  $C_n$ , then  $|\mathcal{D}_{ss}(C_n, i)| = |\mathcal{D}_{ss}(C_{n-1}, i)| + |\mathcal{D}_{ss}(C_{n-2}, i)| + |\mathcal{D}_1| + |\mathcal{D}_2|$  where  $\mathcal{D}_1 = \{\{1, 2, 3, ..., n\} - \{x, y\}/x \text{ and } y \text{ are not adjacent}\}$  and  $\mathcal{D}_2 = \{\{1, 2, 3, ..., n\} - \{1, n-1, u\}/u \in \mathcal{D}_{ss}(C_{n-2}, i-1) - \mathcal{D}_{ss}(C_{n-1}, i-1)\}.$ 

**Proof.** By using Theorem 2.1, the result follows.

**Theorem 3.2** For every Cycle  $C_n(n \ge 6)$ ,  $D_{ss}(C_n, x) = x(D_{ss}(C_{n-1}, x) + D_{ss}(C_{n-2}, x)) + (n-5)x^{n-3} + (n-2)x^{n-2}$  with  $D_{ss}(C_4, x) = 2x^2$  and  $D_{ss}(C_5, x) = 5x^3$ .

**Proof.** By using Theorem 3.1 and the definition of strong split domination polynomial we get the result.

**Theorem 3.3** Let  $D_{ss}(C_n, x)$  be the strong split domination polynomial of cycle  $C_n$ . Then the following properties hold.

- 1. For any positive integer n,  $d_{ss}(C_n, n-1) = 0$  and  $d_{ss}(C_n, n) = 0$ .
- 2.  $d_{ss}(C_n, i) = d_{ss}(C_{n-1}, i-1) + d_{ss}(C_{n-2}, i-1)$ , for any positive integer  $\left[\frac{n}{2}\right] \le i \le n-4$ .
- 3.  $d_{ss}(C_{2n}, n) = 2$ , for every positive integer  $n \ge 2$ .
- 4.  $d_{ss}(C_n, n-2) = \frac{n(n-3)}{2}$ , for every positive integer  $n \ge 3$ .

**Proof.** 1. The result follows from Definition 3.1.

- 2. It follows from Theorem 3.2.
- 3. By Theorem 2.1(1),  $\{\{1,3,5,...,2n-1\}\{2,4,6,...,2n\}\}$  is the only strong split dominating set of size n. Hence  $d_{ss}(C_{2n},n)=2$ .

4. There are  $\binom{n}{n-2}$  sets of cardinality n-2. In any cycle  $C_n$ , exactly n pair of vertices are adjacent. So, the number of strong split dominating sets of cardinality n-2 will be  $d_{ss}(C_n, n-2) = \binom{n}{n-2} - (n) = \frac{n(n-3)}{2}$ .

### 4. Conclusion

In this paper we have found the Strong Split Domination polynomial for Cycles. In future we plan to investigate the polynomial for several graph products.

### References

- [1] S. Alikhani and Y.H. Peng, Dominating Sets and Domination Polynomials of Cycles, Global Journal of Pure and Applied Mathematics, Vol.4, No.2, 2008.
- [2] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [3] V. R. Kulli and B. Janakiram, The strong split domination number of a graph, Acta Ciencia Indica, 32 M (2006), 715-720.
- [4] V. R. Kulli, Theory of domination in graphs, Vishwa international publications, 2010.
- [5] E. Selvi and R. Kala, A note on Strong Split Domination Polynomial of a Graph, Proceedings of ICAMMCT-2021, (ISBN: 978-93-85434-84-6)(2021), 125-130.