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ABSTRACT 

In this paper, a novel strategy has been introduced for the re-initialization of the Level-Set field 

by employing the Lagrange method of a multiplier approach. The introduced scheme is quite 

efficient, capable, and based on the Eulerian-Lagrangian method of a multiplier. The idea of a 

geometric-based re-initialization scheme is merged using the concept of the Finite Element 

Method (FEM) and then implemented to higher degree polynomials. Numerical test examples 

will be demonstrated that serve the effectiveness and efficacy of the introduced scheme. 
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1) INTRODUCTION  

The flow that consists of more than one phase is called Multiphase Flow. Multiphase flow has 

many applications and, it is being used in the different types of industrial applications that are 

varying in forms from power generations to food, beverages, and the medical sciences etc. There 

are two popular and well-known techniques for the representation of the multiphase flow.  

i. Eulerian-Eulerian (this technique is used usually in the study of the dense dispersed 

system). 

ii.  Eulerian-Lagrangian (it is the more suitable technique for the particle transport 

examples). 

Both methods mentioned above permit the interaction of stages in terms of momentum, mass 

exchange heat, and turbulence. In physics, a numerical representation should be able to find out 

that includes drag calculations, free-surface flows, particle transport etc. 

In a model of two-phase flow, the two channels in addition to the distinct characteristics and 

distinct phases exist in a single domain. The flow of this type shows the main part in several 

industrial applications that comprises chemical reactors, medical sciences, petroleum industries 

etc. The two-phase flow dynamics may be sophisticated due to the moving interface the two 

channels change their material characteristics in time and space. In addition, by the confined 

flow, the interface is not advected in many cases. However, the shortcoming intermolecular 

forces (tension of the surface) on the interface amid the two channels be the cause of the 

confined flow of acceleration. The two-phase can be classified into four types; the types are (i) 
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Liquid-Gas flow, (ii) Liquid-Solid flow, (iii) Solid-Gas flow and, (iv) Liquid-Liquid flow. In all 

of the four types, the characteristics of the material are different from each other and the motion 

of the interface shows the main part due to the well-defined dissimilar material characteristics of 

two phases, for instance, density and viscosity. 

     The essential parameters devised for the system of the two-phase flow include Heat transfer 

coefficient, Flux limitations, Pressure drop, Mean phase content and Mass transfer coefficient. 

The industrial and engineering applications of the two-phase flow are steam generators and 

condensers, steam turbines (power plants), coal-fired furnaces, liquid sprays, refrigeration, 

pumping of flashing liquids, oil industry where two-phase arise that carries natural gas and oil, 

paper production, free-surface flows where well-defined interface exists energy conversion, food 

production and raining bed driers  

For the modelling of the systems of the two-phase flow, an extensive variety of the models have 

been formulated including computational fluid dynamics (CFD) models, separated flow models, 

drift-flux models, homogenous models and multi-fluid models. The well-known and famous 

methods for the modelling of the two-phase flow are the Level-Set (LS) method [17], Volume of 

Fluid (VOF) method [19], the modified Level-Set (MLS) method [12], Lattice Boltzmann 

method [8], The Marker Particle method [18], and Smooth Particle Hydrodynamics method [7]. 

In Section 2 of this paper, the Level-Set method is discussed, In Section 3; the formulation of the 

Discontinuous Galerkin (DG) method has described. In Section 4, the new re-initialization 

scheme is described along with its example. Test problems have been presented in Section 5 and 

Section 6 (Last Section) the conclusion of the proposed re-initialization scheme is presented. 

2) THE LEVEL-SET METHOD 

In 1987 the two American mathematicians Stanley Osher and James Seithan presented the 

Level-Set Method. The Level-Set Method (LSM) acts as a very robust numerical method and 

this method is devised to detect the moving interfaces. In the Level-Set method, the detection of 

the moving interface is easy to show but mass does not conserve (mass conservation issues arise) 

so, this method is much better to track the moving interface. The solution of the geometric partial 

differential equation (PDE) can usually be the interfaces; the main concept of the Level-Set 

Method (LSM) acts to depict the interface completely by way of the zero Level-Set illustrated in 

the high dimensional Euclidean space. 

In 2D (two-dimensional case), it is assumed that the moving curve (interface) is defined by )(t

(or in a 3D surface) bounded over the region 
2 (it is not required that bounded region is 

closed). The movement of the moving curve (interface) is driven by the velocity field 

),( 21 vvV = that relies on its location, time, and geometry. 

The basic idea explained above is to introduce the Level-Set method as a Level-Set function

),,(  tyx  in the one-dimensional case and higher, it has the property that it is negative, in one 

region and positive, on the other one and its contour is at zero is ).,,(  tyx The present location of 

the moving curve, (interface)  ),,(|),( )(   tyxyxt = is always depicted by the contour is at 

zero. 
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     Mathematically, the equation of the Level-Set function is defined as  

 0=+  Vt  (1) 

Where t represents the changing of interface with respect to time, V is divergence free velocity 

field and   is the gradient of a sign distance function of the interface. 

It is ascertained that the Level-set function preserves the sign distance property i.e. 1  = and 

is a sign distance function of the moving curve (interface). In the two-dimensional case, the 

magnitude of the sign distance function of the Level-Set method can be calculated as 

 22

yx  +
 

(2) 

Where   represents the Level-Set values and x, y 

shows its 

directions. 

 

 

 

 

 
 

Figure. 1– Instance of the Level-Set method 

3) FORMULATION OF THE DISCONTINUOUS GALERKIN METHOD 

Discontinuous Galerkin was initially examined and presented at the beginning of the 1970s as a 

numerical technique to solve the partial differential equation (PDE). In this method, the 

characteristics of the Finite Volume and Finite Element structures are combined and successfully 

it has been implemented in parabolic, elliptic, hyperbolic, and in mixed problems that appear in 

an extensive variety of the applications 

3.1)Discretization of the discontinuous Galerkin Method of the Level-Set equation 

In the discretization scheme of the discontinuous Galerkin (DG) method, the merits of the Finite 

Element and the Finite Volume approaches are combined. Inside every element, its solution is 

extended on the basis of the polynomial, and the flux at each interface is specified individually 
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between the two elements but not the solution, In fact, the solution is not defined at each 

interface. It means that the interface is completely continuous piecewise only i.e. (element to 

element-wise) using the normal vector and curvature of the interface due to the combination of 

the flow equations to the model of the interface. 

3.2) Spatial Discretization 

In a spatial discretization, split up the computational domain  in a set of NT rectilinear triangle 

volume control ,k this procedure is known as tessellation. Tessellation may automatically be 

done if these types of volume controls are selected for the domain as depicted in Figure 2 

 

 

 

 

 

 

 

 

 

Figure 2: Triangular Volume Control )( k  

Like a basis function, the nth degree of the Legendre polynomial )( xL i  is used to extend the 

solution inside every element is, 
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  (3) 

Where, 

 np is the total number of the nodal points inside every single element. 

The solenoid velocity u is given as 

 =+



xxu
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x
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  (4) 

Where 𝑢𝛼 represents the interface velocity. The eq. (4) shows that the Level-Set function is 

preserved. The best approximation of the eq. (4) may be determined by levying the substitution 

of the eq. (3) the residuals are orthogonal to the space polynomial, and it is spanned using the 

increment of the solution. It is defined as 
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Implement the technique of integration by parts, the deficient form of the eq. (4) is attained 

through the Gauss divergence theorem as 
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Where 
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 n̂  shows the normal of pointing outward and 
h
k shows the numerical flux 

Pointing outward normal and the numerical flux both are used as boundary conditions on each 

element. By using the integration by parts technique to make the deficient form into an efficient 

form is, 
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  (7) 

In the definition of the discontinuous Galerkin approach, the main parameter is to select the 

numerical flux and there is a small number of chances for scalar transport equation (4) to 

analyze. The Lax-Friedrichsand the central approximation are determined and presented in [1]. 

Numerical trials demonstrate that once a central flux approximation is applied, the motion will 

happen. The approximation of the numerical flux is specified in Eq. (7) and presently it may be 

appeared in the system of linear equations and levied the orthogonality on it for the solution of 

the np nodal points it introduces the system of np linear equations as, 

 )))((()( −=+



uunFuS

t
M kkk

 (8) 

Where, 

 = (
pn ,,, 21   ), =u ( )(,),(),( 21 tututu

pn   ) are the nodal vector values of 

),( txh
k and at time t ),( txu  inside element k respectively. 

kM shows the matrix of mass, 
kS

shows the matrix of Stiffness and 
kF shows the element operator that operates boundary and it is 

determined as 
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For every element, the eq. (8) is solved, but without studying the solution it may not be solved 

inside the neighboring elements. The dimensions of all the systems are np × np and it may be 

formed in the one linear system of an ordinary differential equation. Mathematically it is 

expressed as 

 )()(
)(

tgtB
t

t
A =+




 (9) 

Where, )( )( , ),( ),()( 21 tttt
Tp Nn =   and )(tg  shows the offering of the not homogenous 

boundary conditions. 

4) NEW RE-INITIALIZATION SCHEME 

In this section, a new re-initialization scheme is presented, which is investigated in this research. 

In the Level-Set method issues of re-initialization arise to cope with that problem many methods 

have been presented in past such as the partial differential equation (PDE) based re-initialization 

method [3], the mass-preserving geometry-based re-initialization method [4] etc. 
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   In this paper, the geometric-based re-initialization scheme is presented and the concept of finite 

element analysis is implemented in it. The concept is that a second-degree polynomial has fitted 

over the rectangular element of the domain and the shortest distances are calculated by using the 

Lagrange method of multiplier approach from the polynomial to all the nodes of each element. It 

is noted that the sign of the Level-Set values would not be changed above and below the 

interface i.e. ).( sign where  are the Level-Set values and sign represented by (negative and 

positive) signs from the interface. After calculating the shortest distance from polynomial to all 

the nodes of each element, so, the new updated value of the Level-Set field is expressed as 

 dsign = )(   (10) 

Where  are the new updated Level-Set values,   are the actual Level-Set values, and the 

shortest distance from the interface is indicated by d. In the finite element analysis, the equation 

of the polynomial over the rectangular element is written as 

 44332211),(           NNNNyx +++=  (11) 

Where 4321 ,, NNNN    , are the shapes functions and 4321 ,,,         are the nodal variables. The 

values of the shape functions are 
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4.1) Evolution 

In evolution, the finite element analysis and Lagrange method of multipliers approaches are 

used. The eq. (12) is solved by applying the finite element methodandafter that, the Lagrange 

method of multipliers approach is used to calculate the shortest distance from the interface by 

using the distance formula. The distance formula is written as follows 

 22 )()( IiIi yyxxd −+−=  (13) 

Where d is the distance, xi and yi are the coordinates of the nodes and xI and yI are the points on 

the interface ( 0),( =yx ). 

4.2) Working 

Consider the rectangular element having coordinates 4321  , , , XXXX with their respective shape 

functions 4321  , , , NNNN with Level-Set values 4 3 2 1  , , ,   as depicted in the given Figure 3 
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Figure 3 – Schematic diagram of all the nodes 

 It is assumed that the 1  for the node 1X , 
2  for the node 2X , 3  for the node

3X , 4  for the 

node
4X and so on. Fit the polynomial over the rectangular element and calculate the shortest or 

minimum distance from the interface where it is equal to zero i.e. .0),( =yx  The Lagrange 

method of multiplier approach is used to calculate the shortest or minimum distance given that it 

minimizes the function such that .0),( =II yx  

4.3) Lagrange Method of Multipliers and its Derivation 

In mathematical optimization, the langrage method of the multipliers approach is used for 

minimizing or maximizing the function that is subjected to equality constraints. For our 

illustration, let us consider the optimization problem 

                       Minimize 𝑑(𝑥, 𝑦) 

                       Subject to the condition 𝜙(𝑥, 𝑦) = 0 

Where 𝑑(𝑥, 𝑦)shows the distance function and 𝜙(𝑥, 𝑦) is the Level-Set function. It is supposed 

that the first partial derivatives of both functions 𝑑(𝑥, 𝑦) and 𝜙(𝑥, 𝑦) are continuous. Now the 

new variable is introduced namely (𝜆) and it is known as the Lagrange multiplier and its study is 

exemplified as follows 

 ),(),()( yxyxdx,y,  += L  (14) 

Where the term can be added or subtracted in eq. (14)  

Derivation  

),(  ),( ),( cccccc yxyxdyxL +=
 

Where, 
222 )()( icic yyxxdS −+−== and 0  ),( =+++= dcyyxbxayx cccccc

 

cc yx  and are the unknown points and ii yx  and are the known points respectively
 

0  ),( =+++= dcyyxbxayx cccccc
 

Where, dcba  , , ,  are the coefficients of the equation and they are constants that can be negative 

and positive. 
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Solving Eq. (15) and Eq. (16) we get, 

( )














−−

+−−

−

+−−
=

)4(

  24 2
 ,

)4(

  2   24
, 

22 

2

22 

2

b

cyabbx

b

bcaybx
yxN iiii

II








 

Substitute the values of xI and yI in Eq. (17) we have, 
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Hence the final form is given as 

 02 3 4 =++++ EDCBA   (18) 

The equation (18) is the quadratic equation of and the values of   will be used to compute the 

shortest / minimum distance from the interface to all the nodes of each element. 
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The reasoning behind the complex of roots is according to the fundamental theorem of algebra 

which states that “the polynomial of degree one and its greatest powers contains at least one 

roots of the complex number system” but in this research, the discriminant of the quadratic 

equation is less than zero and its physical significance according to this research is that the 

values of the xI and yI are computed by using the real roots which are lying at the interface and 

calculated the shortest distance from the point (with coordinates xI and yI) of the interface to all 

the nodes and neglects the complex roots but after plugging the complex roots (λ) in the xI and 

yI relation  so, it will give the complex values of xI and yI that would not be lying at the interface 

(Maybe it lies outside the interface). So, in this scenario, it is impossible to compute the shortest / 

minimum distance from that point (interface point) to all the nodes of the grid elements. 

Remark: It is remembered that if all the roots of the equation of the polynomial are complex, in 

this condition the shortest or minimum distance d is replaced by the actual Level-Set values )(  

 

 

 

4.4) Plotting of the Level-Set Field before and after Re-initialization 

4.5) Errors and Norms of the re-initialized Level-Set Field 

Mesh width 

(h) 

Error 

Norm 2 

 Order of 

Convergence 

Error 

Norm infinity 

 Order of 

Convergence 

 

Figure 3: Actual Level-Set Field with its 

contours before re-initialization 

 

Figure 4: Actual Level-Set Field with its 

contours after re-initialization 
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01.0=h  2.1323 ----- 0.1570 ----- 

005.0=h  3.9938 0.5339 0.1827 0.8593 1  

0025.0=h  7.6450 0.5224 0.2034 0.8982 1  

Table 1: Norm 2 and Norm infinity Errors of the re-initialized Level-Set Field with their  

 Convergence   

 

5) TEST PROBLEMS 

In this section, two problems are discussed namely  

(i) The Bubble Advection using a cross section of lens-shaped interface 

 (ii) Zalesak’s rotating disc test 

5.1). The Bubble Advection with the Shape of lens-shaped Cross section. 

At first, the well-known test case studied for the models of incompressible two-phase flow is a 

circular shape bubble. It depends on the liquid characteristics of materials and the ratio of the 

densities among the two phases, the variation in the contour of the bubble from its initial form to 

the final form. 

Along with the domain ]1 ,0[]1 ,0[ =  the solution is attained, for the Level-Set (LS) field the 

initial condition is given as follows  

 ( ) ( ) ( )   0 ,  ,0 ,  max0 , 21  XXXl  −=  (19) 

Where, 

 ( ) RXXX
c

−−=  )0( 0 , 11      (20) 

 ( ) RXXX
c

−−=  )0( 0 , 22  (21) 

Here we have taken the values of ( ) ( )TcTc
XX

 

2

 

1 35.0 ,5.0)0(  ,2.0 ,5.0)0( == and .15.0=R so, 

before and after re-initialization the bubble advection with the lens-shaped interface is depicted 

in Figure 6 and Figure 7. 
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Figure 5: Bubble with 

a lens shape interface 

before  re-initialization 

Figure 6: Bubble with 

a lens shape interface 

after re-initialization 

 

5.1.1) Errors and Norms of the re-initialized 

bubble with a lens shape interface 

Mesh 

width 

(h) 

Erro

r 

Nor

m 2 

 Order of 

Converge

nce 

Erro

r 

Nor

m 

infini

ty 

 Order of 

Converge

nce 

01.0=h  
4.272

3 
----- 

0.376

6 
----- 

005.0=h
 

7.541

5 
0.5665 1  

0.390

1 
0.9654 1  

0025.0=h
 

13.85

61 
0.5443 

0.396

5 
0.9839 1  

Table 2: Norm 2 and Norm infinity Errors of the re-initialized bubble with a lens shape 

interface with their convergence 

 

5.2). Zalesak's Rotating Disc 
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In the next case, Zalesak's rotating disc test problem has been discussed. It is defined over the 

same domain which is considered in the preceding test problem. For the Level-Set (LS) field the 

initial condition is given as follows 

 ( ) ( ) ( )   0 ,  ,0 ,  max0 , 21 XXX  −=l  (22) 

Where, 

 ( ) RXXX
c

−−=  )0( 0 , 11   (23) 

 ( ) ( )lwXXwXXX
cc

−+−−−=  2)0(  , )0(  max0 , 22112  (24) 

Here we have taken the values of ( ) ,0.75,0.5)0(     

Tc
X = 15.0=R and ( )0 , 2 X  represents the 

rectangular region with breath 6Rw = and its length is Rl = respectively. So, before and after 

re-initialization the Zalesak’s rotating disc is depicted in Figure 8 and Figure 9 

 
Figure 7: Zalesak’s disc test before re-

initialization 

 
Figure 8: Zalesak’s disc test after re-

initialization 

 

   5.2.1) Errors and Norms of the re-initialized Zalesak’s rotating disc  

Mesh width 

(h) 

Error 

Norm 2 

 Order of 

Convergence 

Error 

Norm infinity 

 Order of 

Convergence 

01.0=h  3.7053 ----- 0.2173 ----- 

005.0=h  7.1262 0.5200 0.2184 0.9950 1  

0025.0=h  13.9807 0.5097 0.2200 0.9927 1  

Table 3: Norm 2 and Norm infinity Errors of the re-initialized Zalesak’s rotating disc with 

their convergence 
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Zalesak’s disc is a challenging problem due to its interface issue because in Zalesak’s disc test 

problem interface is C0continuous only and it has concave and convex both at the regions. The 

sharp corners of the interface are preserved by the Numerical techniques and are measured on 

their capability.  

6)  CONCLUSION 

An efficient re-initialization method is presented for the Level-Set field based on signed distance 

computation. The proposed method is perfectly in-line in addition to the framework of the Finite 

Element Method suing discontinuous Galerkin Method (DGFEM). (i.e. element-wise 

operations). This method has the potential to extend it over higher-order polynomial 

approximation. Numerical test examples reveal the efficacy and effectiveness of the introduced 

scheme. In future research, the author may proceed with this research to the highest degree 

polynomials (i.e. 3rd degree, 4th degree, and so on) and implement this approach to the 

triangular and tetrahedral meshes.  

NOTATION 

 = Level-Set value / Level-Set function 

)(t = Interface in time t. 

        = Bounded region / computationally domain. 

t        = Changing of interface with respect to time t. 

V        = Divergence-free velocity field. 

∇𝜙     = Gradient of the sign distance function. 

k     = Triangular volume control. 

)(xLi  = Legendre polynomial. 

np       = Total number of nodal points. 

u       = Solenoid velocity.   

n̂         = Pointing outward normal. 

h
k       = Numerical flux. 

kM     = Matrix of mass. 

kS      = Matrix of Stiffness. 

kF     = Element operator that operates boundary. 

N= Shape function of the Lagrange polynomial. 

ii yx  and = Coordinates of the nodes. 

ii yx  and = Coordinates of the nodes. 

II yx  and = Points on the interface. 

       = Lagrange multiplier. 

T       = Transpose of the matrix. 
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R       = Radius of the circle 

w       = Breath of the rectangular region. 

l        = Length of the rectangular region. 
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