Morphisms in Trilogarithmic Tangent Complex of Order Three

Sadaqat Hussain*, Shahid Hussain*, Shams-ur-Rahaman **, Suhail Abbas **, Raziuddin Siddiqui*** and Muhammad Ilyas****

^{*} Department of Mathematics, University of Baltistan Skardu16100, Pakistan

**Department of Mathematical Sciences, Karakoram International University Gilgit 15100, Pakistan

****Department of Mathematics, IBA Karachi, Sindh, Pakistan

*****Department of Mathematics, Government College University Hyderabad, Sindh, Pakistan

Abstract- In this paper we present maps and other necessary ingredients in third order trilogarithmic tangent groups and use these maps to relate the Grassmannian complex to Tangential trilogarithmic complex of order three. We also extend seigel's cross ratio and five term relation to order 3 and finally prove the commutativity of resulting diagrams. This work will play a key role in the generalization of these constructions.

Index Terms: Cutting, Greenhouse, rate, Substrate, Survival, Rosemary.

I. INTRODUCTION

The Grassmannian Complex is for the first time structured by A. Suslin which is used as a major tool to study co-homology of motivic complexes, knot theory and theory of manifolds (See [5], [9]). The natural connectivity between Grassmannian complex and polylogarithmic groups is one of its key feature which always captivated the renowned researchers to study since its beginning. In [3] the renowned mathematician A.B. Gonchrove derived motivic complexes in order to verify the Conjecture of Zagier on polylogs. Later, Cathelineau classified motivic complexes into two classes i.e. tangential complex and infinitesimal complex. Moreover, he produced tangential groups on dual numbers and used them to formulate tangential complex (See [1] and [2]). Another researcher who worked on these complexes is Siddiqui who derived the cross-ratio, functional equations of tangential complex and also formed certain morphisms. He used his constructions to link the Grassmannian complex and Tangential complex for the order one(See [10], [11] and [12],[13],[14]).

In [5] we broadened the constructions of Siddiqui for the second order. We also formed certain maps π_{0,e^n}^3 and π_{1,e^n}^3 in order to generalize the connection between Grasmmanian complex and Tangential complex for weight 2. However, the current study deals with the study of maps in the third order of Trilogarithmic tangential complexes as we are naturally motivated to extend these constructions up to a general order. To do this the study of only first two orders are not enough as they do not reflect any specific pattern. So the study of next order is essential after which we can attain the required goal. In

the first section we introduce the group $T\mathcal{B}_{3}^{3}(F)$ as third ordered tangent group in weight 3. This group also satisfies functional equations of trilogarithms. After that we produce cross ratio, triple-ratio and seigel's identity and then we give a map $\partial_{\varepsilon^{3}}$ in equation (13) to construct trilogarithmic tangential complex. Moreover we propose three more maps $\pi_{0,\varepsilon^{3}}^{3}$, $\pi_{1,\varepsilon^{3}}^{3}$ and $\pi_{2,\varepsilon^{3}}^{3}$ which enable us to formulate the diagram (*B*). In the last section we demonstrate proof of the commutativity of left and right squares of the diagram (*B*)).

I. MATERIALS AND METHODS 2.1 Grassmannian Complex

Let us consider $C_m(\eta)$ be a free commutative group generated by the configurations $(\ell_1, ..., \hat{\ell}_i, ..., \ell_m)$ of the elements of an η -dimensional vector space V_η and $(\ell_i | \ell_1, ..., \hat{\ell}_i, ..., \ell_m)$ be the projective configuration of the vectors ℓ_j along the vectors ℓ_i , where $i \neq j; j = 0, ..., m$, then we can define differential maps $d: C_{(m+1)}(\eta) \rightarrow C_m(\eta)$ and $d': C_{(m+1)}(\eta + 1) \rightarrow C_m(\eta)$ as $d: (\ell_1, ..., \ell_m) \mapsto \sum_{i=0}^m (-1)^m (\ell_1, ..., \hat{\ell}_i, ..., \ell_m)$ $d': (\ell_1, ..., \ell_m) \mapsto \sum_{i=0}^m (-1)^m (\ell_i | \ell_1, ..., \hat{\ell}_i, ..., \ell_m)$

Above settings lead us to an algebraic complex given as

known as Grassmannian Complex.

2.2 Trilogarithmic Complexes of The Third Order Tangent Groups

Let $F[\varepsilon]_4$ be a truncated polynomial ring over an arbitrary field F then the \mathbb{Z} -module $T\mathcal{B}_2^3(F)$ is called a tangent group of order 3 if it is generated by $\langle s; s', s'', s''' \rangle \in Z[F[\varepsilon]_4]$ and quotient by kernel of the map

 $\partial: Z[F[\varepsilon]_4] \to (T\mathcal{B}_2^3(F) \otimes F^{\times}) \oplus (F \otimes \mathcal{B}_2(F))$ where ∂ can be described as $\begin{array}{l} \partial(\langle s;t_1,t_2,t_3]_2) = \langle s;t_1,t_2,t_3]_2^3 \otimes s + \left(\frac{3t_3}{s} - \frac{3t_1t_2}{s^2} + \frac{t_1^3}{s^3}\right) \otimes \\ [s]_2 \\ \text{where } \langle s;t_1,t_2,t_3] = [s + t_1\varepsilon + t_2\varepsilon^2 + t_3\varepsilon^3] - \\ [s], (s,t_1,t_2,t_3 \in F). \\ \text{Use } \mathcal{TB}_3^3(F) \text{ to form the complex below} \end{array}$

$$T\mathcal{B}_{3}^{3}(F) \xrightarrow{\partial_{\mathcal{E}^{3}}} (T\mathcal{B}_{2}^{3}(F) \otimes F^{\times}) \oplus (F \otimes \mathcal{B}_{2}(F)) \xrightarrow{\partial_{\mathcal{E}^{3}}} (F \otimes F^{\times}) \oplus (A^{\times}F)$$

$$(2)$$

Our aim is to propose morphisms between this complex and the famous Grassmannian complex.

2.3 Cross-Ratio

In [5] cross ratio has been constructed for second order tangential settings so we use here the similar technique to extend it to third order. Let $A_{F[\varepsilon]_4}^3$ represent an affine space over the turncated ring of polynomials $F[\varepsilon]_4$ and $(v_0^*, ..., v_3^*)$ belongs to $C_4(A_{F[\varepsilon]_4}^3)$ then we obtain

$$r(v_0^*, \dots, v_3^*) = \frac{\{\sum_{j=0}^3 (v_0^*, v_3^*)_{\epsilon^j} \epsilon^j\}\{\sum_{j=0}^3 (v_1^*, v_2^*)_{\epsilon^j} \epsilon^j\}}{\{\sum_{j=0}^3 (v_0^*, v_2^*)_{\epsilon^j} \epsilon^j\}\{\sum_{j=0}^3 (v_1^*, v_3^*)_{\epsilon^j} \epsilon^j\}}$$

From now we use a short hand \mathbb{V}_{0n}^* to denote the tuple $(v_0^*, ..., v_n^*)$ of $C_n(A_{F[\varepsilon]_{n+1}}^n)$. Now we reform the above ratio into simpler form $G + H\epsilon + I\epsilon^2 + J\epsilon^3$, where the unknowns G, H and I represents $r(\mathbb{V}_{03}^*)$, $r_{\varepsilon}(\mathbb{V}_{03}^*)$ and $r_{\varepsilon^2}(\mathbb{V}_{03}^*)$ respectively. Values of first two of these coefficients are calulated in [10] and [5] respectively. In the same way we can evaluate "J" or $r_{\varepsilon^3}(\mathbb{V}_{03}^*)$ as follows

$$\begin{aligned} r_{\varepsilon^{3}}(\mathbb{V}_{03}^{*}) &= \frac{\{(v_{0}^{*}, v_{3}^{*})(v_{1}^{*}, v_{2}^{*})\}_{\varepsilon^{3}}}{(v_{0}, v_{2})(v_{1}, v_{3})} - r_{\varepsilon}(\mathbb{V}_{03}^{*})\frac{\{(v_{0}^{*}, v_{2}^{*})(v_{1}^{*}, v_{3}^{*})\}_{\varepsilon^{2}}}{(v_{0}, v_{2})(v_{1}, v_{3})} \\ -r_{\varepsilon^{2}}(\mathbb{V}_{03}^{*})\frac{\{(v_{0}^{*}, v_{2}^{*})(v_{1}^{*}, v_{3}^{*})\}_{\varepsilon}}{(v_{0}, l_{2})(v_{1}, v_{3})} - r(\mathbb{V}_{03})\frac{\{(v_{0}^{*}, v_{2}^{*})(v_{1}^{*}, v_{3}^{*})\}_{\varepsilon^{3}}}{(v_{0}, v_{2})(v_{1}, v_{3})} \\ \end{aligned}$$

where $\{(v_j^*, v_k^*)(v_m^*, v_n^*)\}_{\varepsilon^3} = \sum_{i=0}^3 (v_j^*, v_k^*)_{\varepsilon^{3-i}}(v_m^*, v_n^*)_{\varepsilon^i}$. The triple-ratios $r_{3,\varepsilon^3}(\mathbb{V}_{05}^*)$ of six points over the truncated ring of polynomials $F[\varepsilon]_2$ and $F[\varepsilon]_3$ are described in [10] and [5] so we write here only for the ring $F[\varepsilon]_4$.

$$r_{3,\varepsilon^{3}}(\mathbb{V}_{05}^{*}) = \frac{\{(v_{0}^{*}v_{1}^{*}v_{3}^{*})(v_{1}^{*}v_{2}^{*}v_{4}^{*})(v_{2}^{*}v_{0}^{*}v_{5}^{*})\}_{\varepsilon^{3}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} - r_{3,\varepsilon}(\mathbb{V}_{05}^{*})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon^{2}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} - r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon^{3}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} - r_{3}(\mathbb{V}_{05})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon^{3}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})}$$
(4)
Here $(pqr)_{\varepsilon^{3}}$ represent the expression below

$$(pqr)_{\varepsilon^{3}} := p_{\varepsilon}q_{\varepsilon^{0}}r_{\varepsilon^{3}} + p_{\varepsilon^{0}}q_{\varepsilon^{3}}r_{\varepsilon^{0}} + p_{\varepsilon^{3}}q_{\varepsilon^{0}}r_{\varepsilon^{0}} + p_{\varepsilon}q_{\varepsilon^{2}}r_{\varepsilon^{2}} + p_{\varepsilon}q_{\varepsilon^{2}}r_{\varepsilon^{2}} + p_{\varepsilon}q_{\varepsilon^{2}}r_{\varepsilon^{2}} + p_{\varepsilon}q_{\varepsilon^{2}}r_{\varepsilon^{0}} + p_{\varepsilon^{2}}q_{\varepsilon^{0}}r_{\varepsilon} + p_{\varepsilon^{2}}q_{\varepsilon^{0}}r_{\varepsilon^{0}}$$

$$(5)$$

Lemma 2.1 If (\mathbb{V}_{03}^{*}) is an element of $C_4(A_{F[\varepsilon]_4}^3)$ then $\{\Delta(v_0^*, v_1^*)\Delta(v_2^*, v_3^*)\}_{\varepsilon^3} = \{\Delta(v_0^*, v_2^*)\Delta(v_1^*, v_3^*)\}_{\varepsilon^3} - \{\Delta(v_0^*, v_3^*)\Delta(v_1^*, v_2^*)\}_{\varepsilon^3}$ with $v_i^* = \sum_{k=0}^3 v_{i,\varepsilon^k} \varepsilon^k$; $v_{i,\varepsilon^0} = v_i$; $\Delta(v_i^*, v_j^*) = \sum_{k=0}^3 (v_i^*, v_j^*)_{\varepsilon^k} \varepsilon^k$ and $\Delta(v_i^*, v_j^*)_{\varepsilon^3} = \Delta(v_i, v_{j,\varepsilon^3}) + \sum_{k=0}^3 (v_i^*, v_j^*)_{\varepsilon^k} \varepsilon^k$

$$\Delta(l_{v,\varepsilon}, v_{j,\varepsilon^2}) + \Delta(v_{i,\varepsilon^2}, v_{j,\varepsilon}) + \Delta(v_{i,\varepsilon^3}, v_j)$$

Proof. We can deduce the proof directly from the result of Lemma 2.1 of [12] by setting = 3.

Effect of substrates nature on rosemary growth Consider the following diagram

$$\begin{array}{cccc} C_{6}\left(A_{F[\varepsilon]_{4}}^{3}\right) & \stackrel{d}{\to} & C_{5}\left(A_{F[\varepsilon]_{4}}^{3}\right) & \stackrel{d}{\to} & C_{4}\left(A_{F[\varepsilon]_{4}}^{3}\right) \\ \downarrow & \pi_{2,\varepsilon^{3}}^{3} & \downarrow & \pi_{1,\varepsilon^{3}}^{3} & \downarrow & \pi_{0,\varepsilon^{3}}^{3} \end{array}$$
$$T\mathcal{B}_{3}^{3}(F) & \stackrel{\partial_{\varepsilon^{3}}}{\to} & (T\mathcal{B}_{2}^{3}(F)\otimes F^{\times}) \oplus \left(F\otimes\mathcal{B}_{2}(F)\right) & \stackrel{\partial_{\varepsilon^{3}}}{\to} & \left(F\otimes^{2}_{\Lambda}F^{\times}\right) \oplus \left(\stackrel{\Lambda}{\wedge}F\right) \end{array}$$

where

$$\pi_{0,\varepsilon^{3}}^{3}(\mathbb{V}_{03}^{*}) = \sum_{i=0}^{3} (-1)^{i} [(3\frac{(v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}, \dots, \hat{v}_{i}, \dots, v_{3})} - 3\frac{(v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\varepsilon}(v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\varepsilon^{2}}}{(v_{0}, \dots, \hat{v}_{i}, \dots, v_{3})^{2}} + \frac{(v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\varepsilon}^{*}}{(v_{0}, \dots, \hat{v}_{i}, \dots, v_{3})^{2}}) \otimes \frac{(v_{0}, \dots, \hat{v}_{i+1}, \dots, v_{3})}{(v_{0}, \dots, \hat{v}_{i+2}, \dots, v_{3})} + \frac{\lambda_{j}^{*}}{\lambda_{j}^{*}} \{3\frac{(v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}, \dots, \hat{v}_{i}, \dots, v_{3})} + \frac{3}{j \times i} \{3\frac{(v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}, \dots, \hat{v}_{i}, \dots, v_{3})}\}], i \mod 4,$$

$$(6)$$

$$\pi_{1,\varepsilon^{3}}^{3}(\mathbb{V}_{04}^{*}) = -\frac{1}{3} \sum_{i=0}^{4} (-1)^{i} (\langle r(v_{i}|v_{0}, ..., \hat{v}_{i}, ..., v_{4});$$

$$r_{\varepsilon}(v_{i}^{*}|v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., v_{4}^{*}), ..., r_{\varepsilon^{3}}(v_{i}^{*}|v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., v_{4}^{*})]_{2}^{3}$$

$$\otimes \prod_{i \neq j} (\hat{v}_{i}, \hat{v}_{j}) + \sum_{j=0}^{4} \{3 \frac{\langle v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*}\rangle_{\varepsilon^{3}}}{(v_{0}, ..., \hat{v}_{i}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})} - \frac{1}{j \neq i} \{3 \frac{\langle v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*}\rangle_{\varepsilon^{3}}}{(v_{0}, ..., \hat{v}_{i}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})_{\varepsilon^{2}}} + \frac{\langle v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*}\rangle_{\varepsilon^{3}}}{(v_{0}, ..., \hat{v}_{i}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})_{\varepsilon^{3}}^{2}} \} \otimes [r(v_{i}|v_{0}, ..., \hat{v}_{i}, ..., v_{4})]_{2})$$

$$(7)$$

$$\pi_{2,\epsilon^{3}}^{3}(\mathbb{V}_{05}^{*}) = \frac{2}{45} \operatorname{Alt}_{6}(r_{3}(\mathbb{V}_{05}); r_{3,\epsilon}(\mathbb{V}_{05}^{*}), r_{3,\epsilon^{2}}(\mathbb{V}_{05}^{*}), r_{3,\epsilon^{3}}(\mathbb{V}_{05}^{*})]_{3}^{3}$$
(8)

where

$$r_{3}(\mathbb{V}_{05}) = \frac{(v_{0}v_{1}v_{3})(v_{1}v_{2}v_{4})(v_{2}v_{0}v_{5})}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})}$$
(9)

and

$$r_{3,\varepsilon}(\mathbb{V}_{05}^{*}) = \frac{\{(v_{0}^{*}v_{1}^{*}v_{3}^{*})(v_{1}^{*}v_{2}^{*}v_{4}^{*})(v_{2}^{*}v_{0}^{*}v_{5}^{*})\}_{\varepsilon}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} - r_{3}(\mathbb{V}_{05})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})}$$
(10)

$$r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*}) = \frac{\{(v_{0}^{*}v_{1}^{*}v_{3}^{*})(v_{1}^{*}v_{2}^{*}v_{4}^{*})(v_{2}^{*}v_{0}^{*}v_{5}^{*})\}_{\varepsilon^{2}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} - r_{3,\varepsilon}(\mathbb{V}_{05}^{*})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})}$$

http://xisdxjxsu.asia

VOLUME 18 ISSUE 8 August 2022

781-788

$$-r_{3}(\mathbb{V}_{05})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon^{2}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})}$$
(11)

$$\begin{split} r_{3,\varepsilon^{3}}(\mathbb{V}_{05}) \\ &= \frac{\{(v_{0}^{*}v_{1}^{*}v_{3}^{*})(v_{1}^{*}v_{2}^{*}v_{4}^{*})(v_{2}^{*}v_{0}^{*}v_{5}^{*})\}_{\varepsilon^{3}}}{(v_{0}\mathbb{A}_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} \\ &- r_{3,\varepsilon}(\mathbb{V}_{05})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon^{2}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} \end{split}$$

$$-r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})} - r_{3}(\mathbb{V}_{05})\frac{\{(v_{0}^{*}v_{1}^{*}v_{4}^{*})(v_{1}^{*}v_{2}^{*}v_{5}^{*})(v_{2}^{*}v_{0}^{*}v_{3}^{*})\}_{\varepsilon^{3}}}{(v_{0}v_{1}v_{4})(v_{1}v_{2}v_{5})(v_{2}v_{0}v_{3})}$$
(12)
Now let us use the shorthand

 $s = r_{3}(\mathbb{V}_{05}), t_{1} = r_{3,\varepsilon}(\mathbb{V}_{05}^{*}), t_{2} = r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*}) \text{ and } t_{3} = r_{3,\varepsilon^{3}}(\mathbb{V}_{05}^{*}) \text{ in order to exhibit the map } \partial_{\varepsilon^{3}} \text{ as} \\ \partial_{\varepsilon^{3}}(\langle s; t_{1}, t_{2}, t_{3} \rangle_{2}^{3} \otimes c + x \otimes [y]_{2}) = \delta^{1} + \delta^{2}$

$$\int_{\mathcal{E}^3} (\langle s; t_1, t_2, t_3 \rangle_2^2 \otimes \mathcal{C} + \mathcal{X} \otimes [y]_2) = \delta^2 + \delta^2$$
(13)

where

$$\delta^{1}(\langle s; t_{1}, t_{2}, t_{3}]_{2}^{3} \otimes c + x \otimes [y]_{2}) = \left(\frac{3t_{3}}{s} - \frac{3t_{1}t_{2}}{s^{2}} + \frac{t_{1}^{3}}{s^{3}} \right) \otimes (1 - s) \wedge c - (\frac{3t_{3}}{1 - s} - \frac{3t_{1}t_{2}}{(1 - s)^{2}} + \frac{t_{1}^{3}}{(1 - s)^{3}}) \otimes s \wedge c + x \otimes (1 - y) \wedge y$$
(14)

$$\delta^{2}(\langle s; t_{1}, t_{2}, t_{3}]_{2}^{3} \otimes c + x \otimes [y]_{2}) = \left(\frac{3t_{3}}{s} - \frac{3t_{1}t_{2}}{s^{2}} + \frac{t_{1}^{3}}{s^{3}}\right) \wedge \left(\frac{3t_{3}}{1-s} - \frac{3t_{1}t_{2}}{(1-s)^{2}} + \frac{t_{1}^{3}}{(1-s)^{3}}\right) \wedge x$$
(15)

and

$$\partial_{\varepsilon^{3}}(\langle s; t_{1}, t_{2}, t_{3}]_{3}^{3}) = \langle s; t_{1}, t_{2}, t_{3}]_{2}^{3} \otimes s + \left(\frac{3t_{3}}{s} - \frac{3t_{1}t_{2}}{s^{2}} + \frac{t_{1}^{3}}{s^{3}}\right) \otimes [s]_{2}$$
(16)

Theorem 2.2 Commutation holds in the diagram given below

$$\begin{array}{c} C_{5}(\mathbb{A}^{3}_{\mathbb{F}[\varepsilon]_{4}}) & \xrightarrow{d} & C_{4}(\mathbb{A}^{3}_{\mathbb{F}[\varepsilon]_{4}}) \\ & & \downarrow^{\pi^{3}_{1,\varepsilon^{3}}} & & \downarrow^{\pi^{3}_{0,\varepsilon^{3}}} \\ \left(T\mathcal{B}^{3}_{2}(\mathbb{F}) \otimes \mathbb{F}^{\times}\right) \oplus (\mathbb{F} \otimes \mathcal{B}_{2}(\mathbb{F})) & \xrightarrow{\partial_{\varepsilon^{3}}} & \left(\mathbb{F} \otimes \bigwedge^{2} \mathbb{F}^{\times}\right) \oplus \left(\bigwedge^{3} \mathbb{F}^{\times}\right) \oplus \left(\mathbb{F}^{\times}\right) \oplus \left(\mathbb{F}^{\times$$

i.e. $\partial_{\varepsilon^3} \circ \pi^3_{1,\varepsilon^3} = \pi^3_{0,\varepsilon^3} \circ d$

Proof. Definition of π_{0,ε^3}^3 is given in (6) which seems in a complex form so we divide it as $\pi_{0,\varepsilon^3}^3 = \phi_1 + \phi_2$. Now we compute both parts $\phi_2 \circ d(\mathbb{V}_{04}^*)$ and $\phi_1 \circ d(\mathbb{V}_{04}^*)$ separately.

$$\begin{split} \phi_1 \circ d(\mathbb{V}_{04}^*) &= \phi_1 \left(\sum_{i=0}^{3} (-1)^i (v_0^*, \dots, \hat{v}_i^*, \dots, v_4^*) \right) \\ &= \widetilde{\operatorname{Alt}}_{(01234)} \left[\sum_{i=0}^{3} (-1)^i \{ 3 \frac{(v_0^*, \dots, \hat{v}_i^*, \dots, v_3^*)_{\varepsilon^3}}{(v_0, \dots, \hat{v}_i, \dots, v_3)} \right. \\ &- (3 \frac{(v_0^*, \dots, \hat{v}_i^*, \dots, v_3^*)_{\varepsilon} (v_0^*, \dots, \hat{v}_i^*, \dots, v_3^*)_{\varepsilon^2}}{(v_0, \dots, \hat{v}_i, \dots, v_3)^2} \end{split}$$

$$-\frac{(v_{0}^{*},...,\hat{v}_{i}^{*},...,v_{3}^{*})_{\tilde{\varepsilon}}^{2}}{(v_{0},...,\hat{v}_{i+1},...,v_{3})^{3}}\otimes\frac{(v_{0},...,\hat{v}_{i+1},...,v_{3})}{(v_{0},...,\hat{v}_{i+2},...,v_{3})}$$

$$\wedge\frac{(v_{0},...,\hat{v}_{i+3},...,v_{3})}{\Delta(v_{0},...,\hat{v}_{i+2},...,v_{3})}), \quad i\text{mod4}\}]$$
(17)

where $\widehat{\operatorname{Alt}}_{(01234)}$ describes alternating sum. The simplification of internal sum provides us 12 terms of the form $p \otimes \frac{q}{r} \wedge \frac{s}{r}$ and by utilizing the relations $p \wedge \frac{q}{r} = p \wedge q - p \wedge r$ and $(p + q) \otimes$ $r = p \otimes r + q \otimes r$, the terms become 48 which are of the form $p \otimes q \wedge r$. Then we apply alternating sum which gives us 240 terms. All these terms will be of three different types like $\frac{p_s^2}{p^3} \otimes q \wedge r$, $3\frac{p_{s^3}}{p} \otimes q \wedge r$ and $3\frac{p_{s}p_{s^2}}{p} \otimes q \wedge r$. Moreover we write the terms together whose first factor. For instance, the combined expression of the terms with common factor $(\frac{v_4^*, v_2^*, v_3^*)_s^2}{p} \otimes \dots$ is

$$\frac{(v_{4}^{1}, v_{2}^{1}, v_{3}^{2})_{\epsilon}}{\Delta(v_{4}, v_{2}^{1}, v_{3}^{2})_{\epsilon}^{3}}} \otimes \cdots \text{ is}$$

$$\frac{(v_{4}^{1}, v_{2}^{1}, v_{3}^{2})_{\epsilon}^{3}}{\Delta(v_{4}, v_{2}, v_{3})} \otimes (\Delta(v_{0}, v_{3}, v_{4}) \wedge (v_{0}, v_{2}, v_{3}) - (v_{0}, v_{3}, v_{4}) \wedge (v_{0}, v_{2}, v_{4}) - \Delta(v_{0}, v_{2}, v_{4}) \wedge (v_{0}, v_{2}, v_{3}) + \Delta(v_{1}, v_{3}, v_{4}) \wedge (v_{1}, v_{2}, v_{4}) - (v_{1}, v_{3}, v_{4}) \wedge (v_{1}, v_{2}, v_{3}) + (v_{1}, v_{2}, v_{4}) \wedge (v_{1}, v_{2}, v_{3})) \qquad (18)$$
and the terms having common factor $\frac{(v_{1}^{*}, v_{2}^{*}, v_{3}^{*})_{\epsilon^{3}}}{(v_{1}, v_{2}, v_{3})} \otimes \cdots$ will be
$$\frac{(v_{1}^{*}, v_{2}^{*}, v_{3}^{*})_{\epsilon^{3}}}{(v_{1}, v_{2}, v_{3})} \otimes ((v_{0}, v_{2}, v_{3}) \wedge (v_{0}, v_{1}, v_{2}) - (v_{0}, v_{2}, v_{3}) \wedge (v_{0}, v_{1}, v_{2}) - (v_{0}, v_{2}, v_{3}) \wedge (v_{0}, v_{1}, v_{2}) + (v_{2}, v_{3}, v_{4}) \wedge (v_{1}, v_{3}, v_{4}) - (v_{2}, v_{3}, v_{4}) \wedge (v_{1}, v_{2}, v_{4}) + (v_{1}, v_{3}, v_{4}) \wedge (v_{1}, v_{2}, v_{4}))$$
This concludes the calculation of $\phi_{1} \circ d(\mathbb{V}_{04}^{*})$.
Other part $\phi_{2} \circ d(\mathbb{V}_{05}^{*})$ can be evaluated as
$$= \widetilde{AIt}_{(01234)} \{ \int_{j=0}^{3} (3 \frac{(v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\epsilon^{3}}}{(v_{0}, \dots, \hat{v}_{i}, \dots, v_{3})} \int_{j\neq i}^{j\neq i} (v_{0}^{*}, \dots, \hat{v}_{i}^{*}, \dots, v_{3}^{*})_{\epsilon}$$

 $-\left(3\frac{(v_{0}^{*},...,v_{1}^{*})_{.}...,v_{3}^{*})_{\mathcal{E}}(v_{0}^{*},...,v_{3}^{*})_{\mathcal{E}}^{2}}{(v_{0},...,v_{1})^{2}} - \frac{(v_{0}^{*},...,v_{1}^{*})_{\tilde{\ell}}^{*}}{(v_{0},...,v_{1})^{3}}\right), \quad i \bmod 4\}$ (19)

Let us move to calculate $\partial_{\varepsilon^3} \circ \pi^3_{1,\varepsilon^3}$. Using the definitions (7) and (13) we will have $\partial_{\varepsilon^3} \circ \pi^3_{1,\varepsilon^3}(\mathbb{V}^*_{04})$

$$= \partial_{\varepsilon^{3}} (-\frac{1}{3} \sum_{i=0}^{4} (-1)^{i} (\langle r(v_{i} | v_{0}, ..., \hat{v}_{i}, ..., v_{4}); r_{\varepsilon}(v_{i}^{*} | v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., v_{4}^{*}), ..., r_{\varepsilon^{3}}(v_{i}^{*} | v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., v_{4}^{*})]_{2}^{3}$$

$$\otimes \prod_{i \neq j} (\hat{v}_{i}, \hat{v}_{j}) + \sum_{j=0}^{4} \{3 \frac{(v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})_{\varepsilon^{3}}}{(v_{0}, ..., \hat{v}_{i}, ..., \hat{v}_{i}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})_{\varepsilon^{2}}}$$

$$- 3 \frac{(v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})_{\varepsilon}(v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})_{\varepsilon^{2}}}{(v_{0}, ..., \hat{v}_{i}, ..., \hat{v}_{j}, ..., v_{4})^{2}}$$

$$+ \frac{(v_{0}^{*}, ..., \hat{v}_{i}^{*}, ..., \hat{v}_{j}^{*}, ..., v_{4}^{*})_{\varepsilon}^{3}}{(v_{0}, ..., \hat{v}_{i}, ..., \hat{v}_{j}, ..., v_{4})^{2}} \otimes [r(v_{i} | v_{0}, ..., \hat{v}_{i}, ..., v_{4})]_{2})$$
Before the execution of $\partial_{\varepsilon^{3}}$ we break it as

$$\partial_{c^3} = \delta^1 + \delta^2$$

Here we adopt the substitutions below in order to make our calculations easy $a_i = r(v_i | v_0, ..., \hat{v}_i, ..., v_4); b_{i1} = r_{\varepsilon}(v_i^* | v_0^*, ..., \hat{v}_{i_1}^*, ..., v_4^*); b_{i2} = r_{\varepsilon^2}(v_i^* | v_0^*, ..., \hat{v}_{i_1}^*, ..., v_4^*); b_{i3} = r_{\varepsilon^3}(v_i^* | v_0^*, ..., \hat{v}_{i_1}^*, ..., v_4^*); c_i = \prod_{i \neq j} \Delta(\hat{v}_i, \hat{v}_j); y_i = \frac{2}{-} [r(v_i | v_0, ..., \hat{v}_i, ..., v_4)]_2 x_i = \sum_{\substack{j=0\\j\neq i}}^4 \{3 \frac{(v_0^*, ..., \hat{v}_{i_1}^*, ..., v_4)}{(v_0, ..., \hat{v}_{i_1}, ..., v_4)} - (v_i^*, ..., \hat{v}_{i_1}^*, ..., v_4)\}$

http://xisdxjxsu.asia

VOLUME 18 ISSUE 8 August 2022

$$3\frac{(v_{0}^{*},..,\hat{v}_{i}^{*},...,\hat{v}_{j}^{*},...,v_{4}^{*})_{\varepsilon}(v_{0}^{*},...,\hat{v}_{i}^{*},...,\hat{v}_{j}^{*},...,v_{4}^{*})_{\varepsilon^{2}}}{(v_{0},...,\hat{v}_{i},...,\hat{v}_{j},...,v_{4})^{2}} + \frac{(v_{0}^{*},...,\hat{v}_{i}^{*},...,\hat{v}_{j}^{*},...,\hat{v}_{j}^{*},...,\hat{v}_{j}^{*})_{\varepsilon^{2}}}{(v_{0},...,\hat{v}_{i},...,\hat{v}_{j},...,v_{4})^{3}}\}$$
(20)

The execution of δ^1 implies

$$\delta^{1} \circ \pi_{1,\varepsilon^{3}}^{3}(\mathbb{V}_{04}^{*}) = -\frac{1}{3} \sum_{i=0}^{4} (-1)^{i} \left\{ \left(\frac{3b_{3i}}{a_{i}} - \frac{3b_{1i}b_{2i}}{a_{i}^{2}} + \frac{b_{1i}^{3}}{a_{i}^{2}} \right) \otimes (1 - a_{i}) \wedge c_{i} - \left(\frac{3b_{3i}}{1 - a_{i}} - \frac{3b_{1i}b_{2i}}{(1 - a_{i})^{2}} + \frac{b_{1i}^{3}}{(1 - a_{i})^{3}} \right) \otimes a_{i} \wedge c_{i} + x \otimes (1 - y_{i}) \wedge y_{i} \right\}$$

$$(21)$$

The expansion of summation for i = 0, ..., 4 results in five different summands S_i ; i = 0, ..., 4 which we calculate separately

 $\delta^1 \circ \pi^3_{1,\varepsilon^3}(\mathbb{V}^*_{04}) = S_0 - S_1 + S_2 - S_3 + S_4 \qquad (22)$ The value of I_4 can be evaluated by the substitution of i = 4in (21). This implies $1 \quad (3b_{24} \quad 3b_{14}b_{24} \quad b^3_{14})$

$$S_{4} = -\frac{1}{3} \left\{ \left(\frac{b_{34}}{a_{4}} - \frac{b_{14}2_{24}}{a_{4}^{2}} + \frac{b_{14}}{a_{4}^{3}} \right) \otimes (1 - a_{4}) \wedge c_{4} - \left(\frac{3b_{34}}{1 - a_{4}} - \frac{3b_{14}b_{24}}{(1 - a_{4})^{2}} + \frac{b_{14}^{3}}{(1 - a_{4})^{3}} \right) \otimes a_{4} \wedge c_{4} + x \otimes (1 - y_{4}) \wedge y_{4} \right\}$$

$$(23)$$

where $a_4 = r(v_4|v_0, ..., v_3); b_{14} = r_{\varepsilon}(v_4^*|v_0^*, ..., v_3^*); b_{24} = r_{\varepsilon^2}(v_4^*|v_0^*, ..., v_3^*); b_{34} = r_{\varepsilon^3}(v_4^*|v_0^*, ..., v_3^*); y_4 = [r(v_4|v_0, ..., v_3)]_2; c_4 = \prod_{j=0}^3 \Delta(\hat{v}_4, \hat{v}_j).$ $x_4 = \sum_{j=0}^3 \{3 \frac{(v_0^*, ..., \hat{v}_j^*, ..., v_3^*)_{\varepsilon^3}}{(v_0, ..., \hat{v}_j, ..., v_3)} - 3 \frac{(v_0^*, ..., \hat{v}_j^*, ..., v_3^*)_{\varepsilon}(v_0^*, ..., \hat{v}_j^*, ..., v_3^*)_{\varepsilon^2}}{(v_0, ..., \hat{v}_j, ..., v_3)^2} + \frac{(v_0^*, ..., \hat{v}_j^*, ..., v_3^*)_{\varepsilon}}{(v_0, ..., \hat{v}_j, ..., v_3)^2} \}$ (24)

 $\frac{(v_{0},...,\hat{v}_{j},...,v_{3})^{3}}{(v_{0},...,\hat{v}_{j},...,v_{3})^{3}}$ Here we find the values of $\frac{3b_{34}}{a_{4}} - \frac{3b_{14}b_{24}}{a_{4}^{2}} + \frac{b_{14}^{3}}{a_{4}^{3}}$ and $\frac{3b_{34}}{1-a_{4}} - \frac{3b_{14}b_{24}}{(1-a_{4})^{2}} + \frac{b_{14}^{3}}{(1-a_{4})^{3}}$.

$$\begin{split} \frac{b_{14}^3}{a_4^3} &= \left(\frac{r_\epsilon(v_4^* | v_0^*, \dots, v_3^*)}{r(v_4 | v_0, \dots, v_3)}\right)^3 \\ &= \frac{(v_4^* v_0^* v_3^*)_\epsilon^2}{(v_4 v_0 v_3)^3} + \frac{(v_4^* v_1^* v_2^*)_\epsilon^3}{(v_4 v_0 v_2)^3} - \frac{(v_4^* v_1^* v_3^*)_\epsilon^2}{(v_4 v_0 v_2)^3} - \frac{(v_4^* v_1^* v_3^*)_\epsilon^3}{(v_4 v_0 v_2)^3} + \frac{(v_4^* v_0^* v_2^*)_\epsilon^2}{(v_4 v_0 v_2)^2} - \frac{(v_4^* v_1^* v_3^*)_\epsilon^2}{(v_4 v_0 v_2)^2} - \frac{(v_4^* v_1^* v_3^*)_\epsilon^2}{(v_4 v_0 v_2)^2} + \frac{(v_4^* v_0^* v_2^*)_\epsilon^2}{(v_4 v_0 v_2)^2} - \frac{(v_4^* v_1^* v_3^*)_\epsilon^2}{(v_4 v_0 v_2)^2} - \frac{(v_4^* v_0^* v_3^*)_\epsilon^2}{(v_4 v_0 v_2)^2} + \frac{(v_4^* v_0^* v_3^*)_\epsilon^2}{(v_4 v_0 v_2)} + \frac{(v_4^* v_0^* v_3^*)_\epsilon}{(v_4 v_0 v_3)} + \frac{(v_4^* v_0^* v_3^*)_\epsilon}{(v_4 v_0 v_2)^2} + \frac{(v_4^* v_0^* v_3)_\epsilon}{(v_4 v_0 v_3)^2} + \frac{(v_4^* v_0^* v_3)_\epsilon}{(v_4 v_0 v_3)^2}$$

 $\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4v_1v_2)}\frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4v_1v_3)} + 6\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4v_0v_3)}\frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4v_1v_3)}\frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4v_0v_2)} + 6\frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon}}}{(25)}$ $(v_4v_1v_3)$ $(v_4v_1v_2)$ $(v_4v_0v_2)$ $\frac{b_{14}b_{24}}{a_4^2} = \left(\frac{r_\epsilon(v_4^*|v_0^*, \dots, v_3^*)r_{\epsilon^2}(v_4^*|v_0^*, \dots, v_3^*)}{r(v_4^*|v_0, \dots, v_3)}\right)^{\frac{1}{2}}$ $=\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}}+\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_3^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon^2}}{(v_4^*v_1^*v_2^*)_{\epsilon^2}}+$ $(v_4v_0v_3)$ $(v_4v_0v_3)$ $(v_4v_0v_3)$ $(v_4v_1v_2)$ $\frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_1^*v_2^*)_{\epsilon}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_2^*)_{\epsilon^2}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_2^*)_{\epsilon^2}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}}$ $\frac{(v_4v_0v_3)}{(v_4^*v_1^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_1^*v_3^*)_{\epsilon}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}} + \frac{(v_4$ $(v_4v_0v_3)$ $(v_4v_1v_3)$ $(v_4v_0v_3)$ $(v_4v_0v_2)$ $(v_4 v_1 v_3)$ $\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon^2}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}}$ $(v_4v_1v_2)$ $(v_4v_1v_2)$ $(v_4v_0v_2)$ $(v_4v_0v_2)$ $+\frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon^2}}-\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_0^*v_2^*)_{\epsilon^2}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} (v_4v_1v_3)$ $(v_4v_1v_3)$ $(v_4v_1v_2)$ $(v_4v_0v_2)$ $\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon^2}}{(v_4^*v_0^*v_0^*)_{\epsilon}} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon^2}}{(v_4^*v_1^*v_2^*)_{\epsilon^2}}$ $(v_4v_1v_2) \quad (v_4v_1v_3)$ $(v_4v_1v_2) \quad (v_4v_0v_2)$ $(v_4 v_1 v_2)$ $\frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon^2}} + \frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon}} + \frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)$ $(v_4v_1v_3)$ $(v_4v_0v_2)$ $(v_4v_1v_3)$ $\frac{(v_4^*v_0^*v_2^*)_{\epsilon^2}}{(v_4^*v_1^*v_3^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_3^*)_{\epsilon}^2}{(v_4^*v_1^*v_2^*)_{\epsilon}} - 2\frac{(v_4^*v_0^*v_2^*)_{\epsilon}^2}{(v_4^*v_1^*v_3^*)_{\epsilon}}$ $(v_4v_0v_3)^2 (v_4v_1v_2)$ $(v_4v_0v_2)$ $(v_4v_1v_3)$ $(v_4v_0v_2)^2 (v_4v_1v_3)$ $+\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}^2}$ $(v_4v_0v_3) \ (v_4v_1v_2)^2$ $2\frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_1^*)_{\epsilon}^2} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon}^2}{(v_4^*v_0^*v_2^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2$ $(v_4v_0v_2)$ $(v_4v_1v_3)^2$ $\overline{(v_4v_0v_3)^2}$ $\overline{(v_4v_0v_2)}$ $2\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon}^2} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon}^2}{(v_4^*v_1^*v_3^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_3^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_3$ $+ 2 \frac{(v_{4}v_{0}v_{2})^{-}(v_{4}v_{1}v_{2})}{(v_{4}v_{1}v_{3})^{2}} \frac{(v_{4}v_{1}v_{2})_{\ell}}{(v_{4}v_{1}v_{2})_{\ell}} - \frac{(v_{4}v_{0}v_{2})_{\ell}^{2}}{(v_{4}v_{0}v_{2})_{\ell}^{3}} - \frac{(v_{4}v_{1}v_{3})_{\ell}}{(v_{4}v_{0}v_{2})^{3}} - \frac{(v_{4}v_{1}v_{3})_{\ell}}{(v_{4}v_{0}v_{2})^{3}} - \frac{(v_{4}v_{1}v_{3})_{\ell}}{(v_{4}v_{0}v_{3})_{\ell}} \frac{(v_{4}v_{1}v_{2})_{\ell}}{(v_{4}v_{0}v_{2})_{\ell}} - \frac{3 \frac{(v_{4}v_{0}v_{3})_{\ell}}{(v_{4}v_{0}v_{3})_{\ell}} \frac{(v_{4}v_{1}v_{2})_{\ell}}{(v_{4}v_{0}v_{2})_{\ell}} - \frac{3 \frac{(v_{4}v_{0}v_{3})_{\ell}}{(v_{4}v_{0}v_{3})} \frac{(v_{4}v_{1}v_{2})_{\ell}}{(v_{4}v_{0}v_{3})} \frac{(v_{4}v_{1}v_{2})}{(v_{4}v_{1}v_{2})} + \frac{1}{2} \frac{(v_{4}v_{0}v_{3})^{2}}{(v_{4}v_{0}v_{3})} \frac{(v_{4}v_{1}v_{2})_{\ell}}{(v_{4}v_{0}v_{3})} \frac{(v_{4}v_{1}v_{2})_{\ell}}{(v_{4}v_{0}v_{3})} + \frac{1}{2} \frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{0}v_{3})}{(v_{4}v_{0}v_{3})} \frac{(v_{4}v_{0}v_{0}v_{3})}{(v_{4}v_{1}v_{2})} \frac{(v_{4}v_{0}v_{0}v_{3})}{(v_{4}v_{0}v_{0}v_{3})} \frac{(v_{4}v_{0}v_{0}v_{0})}{(v_{4}v_{0}v_{0}v_{0})} \frac{(v_{4}v_{0}v_{0$ $\frac{3 (v_4 v_0 v_3)}{(v_4 v_1 v_3)\epsilon} + 3 \frac{(v_4 v_1 v_2)}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_1 v_3)}{(v_4 v_1^* v_3^*)\epsilon} \frac{(v_4^* v_0^* v_3^*)\epsilon}{(v_4^* v_1^* v_3^*)\epsilon} \frac{(v_4^* v_0 v_2^*)\epsilon}{(v_4 v_0 v_2)\epsilon} + \frac{3 (v_4^* v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} + \frac{3 (v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} + \frac{3 (v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} + \frac{3 (v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)\epsilon} \frac{(v_4 v_0 v_3)\epsilon}{(v_4 v_0 v_3)$ $(v_4v_0v_3)$ $(v_4v_1v_3)$ $(v_4v_0v_2)$ $(v_4 v_1 v_3)$ $3^{(v_4v_1v_3)}_{(v_4v_1v_3)\epsilon} {}^{(v_4v_1v_0v_3)}_{(v_4v_1v_2)\epsilon} {}^{(v_4v_1v_3)}_{(v_4v_1v_2)\epsilon}$ (26) $(v_4v_1v_3)$ $(v_4v_1v_2)$ $(v_4v_0v_2)$
$$\begin{split} \frac{b_{34}}{a_4} &= \frac{(v_4^* v_0^* v_3^*)_{\epsilon^3}}{(v_4 v_0 v_3)} + \frac{(v_4^* v_1^* v_2^*)_{\epsilon^3}}{(v_4 v_1 v_2)} - \frac{(v_4^* v_0^* v_2^*)_{\epsilon^3}}{(v_4 v_0 v_2)_{\epsilon^3}} - \frac{(v_4^* v_1^* v_3^*)_{\epsilon^3}}{(v_4 v_1 v_3)} \\ 2 \frac{(v_4^* v_0^* v_2^*)_{\epsilon}}{(v_4 v_0 v_2)} \frac{(v_4^* v_0^* v_2^*)_{\epsilon^2}}{(v_4 v_1 v_3)} + 2 \frac{(v_4^* v_1^* v_3^*)_{\epsilon}}{(v_4 v_1 v_3)} \frac{(v_4^* v_1^* v_3^*)_{\epsilon^2}}{(v_4 v_1 v_3)} \\ &+ \frac{(v_4^* v_0^* v_3^*)_{\epsilon}}{(v_4 v_0 v_2)} \frac{(v_4^* v_1^* v_2^*)_{\epsilon^2}}{(v_4 v_1 v_2)} + \frac{(v_4^* v_0^* v_3^*)_{\epsilon^2}}{(v_4 v_0 v_2)} \frac{(v_4^* v_1^* v_2^*)_{\epsilon}}{(v_4 v_0 v_2)} - \end{split}$$
 $(v_4^*v_1^*v_3^*)_{\epsilon^3} +$ $(v_4 v_0 v_3) \quad (v_4 v_1 v_2)$ $(v_4 v_0 v_3) \quad (v_4 v_1 v_2)$ $\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_1^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4^*v_0^*v_3^*)_{\epsilon^2}}$ $(v_4v_0v_3)$ $(v_4v_1v_3)$ $(v_4v_0v_3) \quad (v_4v_0v_2)$ $(v_4 v_0 v_3)$ $\frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4^*v_0^*v_3)_{\epsilon^2}} - \frac{(v_4^*v_0^*v_3)_{\epsilon^2}}{(v_4^*v_0^*v_2^*)_{\epsilon}} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon^2}}{(v_4^*v_1^*v_2^*)_{\epsilon^2}} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon^2}}{(v_4^*v_1^*v_2^*)_{\epsilon^2}}$ $(v_4 v_0 v_3) \quad (v_4 v_0 l_2)$ $(v_4v_1v_2)$ $(v_4v_0v_2)$ $(v_4 v_1 v_3)$ $\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon^2}} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon^2}}{(v_4^*v_0^*v_2^*)_{\epsilon}}$ $(v_4v_1v_2)$ $(v_4v_1v_3)$ $(v_4v_1v_2)$ $(v_4v_0v_2)$ $\frac{(v_4v_1v_2)}{(v_4v_1v_3)} + \frac{(v_4v_0v_2)}{(v_4v_1v_3)} + \frac{(v_4v_0v_2)}{(v_4v_1v_3)}$ $(v_4^*v_0^*v_2^*)_{-2}(v_4^*v_1^*v_2^*)_{-2}$

$$\frac{(v_4v_0v_2)\epsilon}{(v_4v_1v_3)^2} - \frac{(v_4v_1v_3)\epsilon}{(v_4v_1v_3)} - \frac{(v_4v_0v_2)\epsilon}{(v_4v_0v_2)^2} - \frac{(v_4v_0v_2)\epsilon}{(v_4v_0v_2)} \\ \frac{(v_4^*v_1^*v_3)\epsilon}{(v_4v_1v_3)^2} + \frac{(v_4^*v_0^*v_3^*)\epsilon}{(v_4v_0v_3)} - \frac{(v_4^*v_0v_2)\epsilon}{(v_4v_0v_2)^2} + \frac{(v_4^*v_0v_3)\epsilon}{(v_4v_0v_3)} - \frac{(v_4v_1v_3)\epsilon}{(v_4v_1v_3)^2} + \frac{(v_4v_0v_3)\epsilon}{(v_4v_1v_3)^2} + \frac{(v_4v_1v_3)\epsilon}{(v_4v_1v_3)^2} + \frac{(v_4v_1v_3)\epsilon}{(v_4v_1v_$$

http://xisdxjxsu.asia

 $\frac{(v_4^*v_0^*v_2^*)_{\epsilon}^2}{(v_4v_0v_2)^2}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4v_1v_2)} + \frac{(v_4^*v_1^*v_3^*)_{\epsilon}^2}{(v_4v_1v_3)^2}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4v_1v_2)}$ $-\frac{(v_4^*v_0^*v_2^*)_{\epsilon}^3}{(v_4v_0v_2)^3}-\frac{(v_4^*v_1^*v_3^*)_{\epsilon}^3}{(v_4v_1v_3)^3}$ $\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon}} - \frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}} + \frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}}{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}\frac$ $(v_4v_0v_3)$ $(v_4v_1v_2)$ $(v_4v_0v_2)$ $(v_4v_0v_3)$ $(v_4v_1v_2)$ $(v_4v_1v_3)$ $(v_4^*v_0^*v_3^*)_{\epsilon}$ $(v_4 v_0 v_3)$ $\frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4v_1v_3)}\frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4v_0v_2)} + \frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4v_1v_3)}\frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4v_1v_2)}\frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4v_0v_2)}$ (27)Using equations (25), (26) and (27) we get $\frac{3b_{34}}{a_4} - \frac{3b_{14}b_{24}}{a_4^2} + \frac{b_{14}^3}{a_4^3}$ $-\frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\epsilon^{3}}}{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\epsilon^{3}}}$ $= 3\left(\frac{(v_4^*v_0^*v_3^*)_{\epsilon^3}}{(v_4v_0v_3)} + \frac{(v_4^*v_1^*v_2^*)_{\epsilon^3}}{(v_4v_1v_2)}\right)$ $(v_4 v_0 v_2)$ $\frac{(v_4^*v_0^*v_2^*)_{\epsilon}}{(v_4^*v_0^*v_2^*)_{\epsilon^2}} + \frac{(v_4^*v_1^*v_3^*)_{\epsilon}}{(v_4^*v_1^*v_3^*)_{\epsilon^2}}$ $(v_4 v_0 v_2) \quad (v_4 v_0 v_2)$ $(v_4v_1v_3)$ $(v_4v_1v_3)$ $\frac{(v_4^*v_0^*v_3^*)_{\epsilon}}{(v_4v_0v_3)}\frac{(v_4^*v_0^*v_3^*)_{\epsilon^2}}{(v_4v_0v_3)} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon}}{(v_4v_1v_2)}\frac{(v_4^*v_1^*v_2^*)_{\epsilon^2}}{(v_4v_1v_2)} + \frac{(v_4^*v_0^*v_3^*)_{\epsilon}^3}{(v_4v_0v_3)^3} +$ $\frac{(v_4^*v_1^*v_2^*)_{\epsilon}^3}{(v_4^*v_0^*v_2^*)_{\epsilon}^3} - \frac{(v_4^*v_1^*v_2^*)_{\epsilon}^3}{(v_4^*v_1^*v_3^*)_{\epsilon}^3}$ (28) $(v_4v_1v_2)^3 \quad (v_4v_0v_2)^3$ $(v_4 v_1 v_3)^3$ Similarly, $\frac{3b_{34}}{1-a_4} - \frac{3b_{14}b_{24}}{(1-a_4)^2} + \frac{b_{14}^3}{(1-a_4)^3}$ $= 3\left(\frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\varepsilon^{3}}}{(v_{4}v_{0}v_{2})} + \frac{(v_{4}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{4}v_{1}v_{3})} - \frac{(v_{4}^{*}v_{0}^{*}v_{1}^{*})_{\varepsilon^{3}}}{(v_{4}v_{0}v_{1})} - \frac{(v_{4}^{*}v_{2}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{4}v_{2}v_{3})}\right)$ $(v_4^*v_2^*v_3^*)_{\varepsilon^3}$ $\frac{(v_4^*v_0^*v_2^*)_{\varepsilon^2}}{(v_4^*v_0^*v_2^*)_{\varepsilon}} - \frac{(v_4^*v_1^*v_3^*)_{\varepsilon^2}}{(v_4^*v_1^*v_3^*)_{\varepsilon}} + \frac{(v_4^*v_1^*v_3^*)_{\varepsilon^2}}{(v_4^*v_1^*v_3^*)_{\varepsilon}} + \frac{(v_4^*v_1^*v_3^*)_{\varepsilon^2}}{(v_4^*v_1^*v_3^*)_{\varepsilon^2}} + \frac{(v_4^*v_1^*v_3^*)_{\varepsilon^2}}{(v_4^*v_1^*v_1^*v_2^*)_{\varepsilon^2}} + \frac{(v_4^*v_1^*v_1^*v_2^*)_{\varepsilon^2}}{(v_4^*v_1^*v_1^*v_2^*)_{\varepsilon^2}} + \frac{(v_4^*v_1^*v_1^*v_2^*)_{\varepsilon^2}}{(v_4^*v_1^*v_1^*v_2^*)_{\varepsilon^2}}$ $(v_4v_0v_2)$ $(v_4v_0v_2)$ $(v_4v_1v_3)$ $(v_4v_1v_3)$ $\frac{(v_4^*v_0^*v_2)}{(v_4^*v_0^*v_1^*)_{\mathcal{E}^2}}\frac{(v_4^*v_0^*v_1^*)_{\mathcal{E}}}{(v_4^*v_0^*v_1^*)_{\mathcal{E}}} + \frac{(v_4^*v_2^*v_3^*)_{\mathcal{E}^2}}{(v_4^*v_2^*v_3^*)_{\mathcal{E}^2}}\frac{(v_4^*v_2^*v_3^*)_{\mathcal{E}^2}}{(v_4^*v_2^*v_3^*)_{\mathcal{E}^2}}$ $(v_4v_2v_3)$ $(v_4v_2v_3)$ $(v_4 v_0 v_1) \quad (v_4 v_0 v_1)$ $+\frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\mathcal{E}}^{3}}{(v_{4}v_{0}v_{2})^{3}}+\frac{(v_{4}^{*}v_{1}^{*}v_{3}^{*})_{\mathcal{E}}^{3}}{(v_{4}v_{1}v_{3})^{3}}-\frac{(v_{4}^{*}v_{0}^{*}v_{1}^{*})_{\mathcal{E}}^{3}}{(v_{4}v_{0}v_{1})^{3}}-\frac{(v_{4}^{*}v_{2}^{*}v_{3}^{*})_{\mathcal{E}}^{3}}{(v_{4}v_{2}v_{3})^{3}}$ (29)Now equation (23) gives us the value of S_4 $S_{4} = -\frac{1}{3} \{ (3 \frac{(v_{4}^{*}v_{0}^{*}v_{3}^{*})_{\epsilon^{3}}}{(v_{4}v_{0}v_{2})_{\epsilon^{3}}} + 3 \frac{(v_{4}^{*}v_{1}^{*}v_{2}^{*})_{\epsilon^{3}}}{(v_{4}v_{1}v_{2})_{\epsilon^{3}}} - 3 \frac{(v_{4}^{*}v_{1}^{*}v_{3}^{*})_{\epsilon^{3}}}{(v_{4}v_{0}v_{2})} + 3 \frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\epsilon}}{(v_{4}v_{0}v_{2})} \frac{(v_{4}^{*}v_{0}v_{2}^{*})_{\epsilon^{2}}}{(v_{4}v_{0}v_{2})} + 3 \frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\epsilon}}{(v_{4}v_{0}v_{2})} + 3 \frac{(v_{4}^{*}v_{0}^$ $3 \frac{(v_4^* v_1^* v_3^*)_{\epsilon}}{(v_4^* v_1^* v_3^*)_{\epsilon^2}} - 3 \frac{(v_4^* v_0^* v_3^*)_{\epsilon}}{(v_4^* v_0^* v_3^*)_{\epsilon}} \frac{(v_4^* v_0^* v_3^*)_{\epsilon^2}}{(v_4^* v_0^* v_3^*)_{\epsilon^2}} - 3 \frac{(v_4^* v_0^* v_3^*)_{\epsilon^2}}{(v_4^* v_0^* v_3^*)_{\epsilon^2}} + 3 \frac{(v_4^* v_0^* v_0^* v_3^*)_{\epsilon^2}}{(v_4^* v_0^* v_3^*)_{\epsilon^2}} + 3 \frac{(v_4$ $3\frac{(v_{4}v_{1}v_{3})}{(v_{4}v_{1}v_{3})}\frac{(v_{4}v_{1}v_{3})}{(v_{4}v_{1}v_{2})\epsilon^{2}} - 5\frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{0}v_{3})}\frac{(v_{4}v_{0}v_{3})}{(v_{4}v_{1}v_{2})}$ $3\frac{(v_{4}^{*}v_{1}^{*}v_{2}^{*})\epsilon}{(v_{4}v_{1}v_{2})}\frac{(v_{4}^{*}v_{1}^{*}v_{2}^{*})\epsilon^{2}}{(v_{4}v_{1}v_{2})} + \frac{(v_{4}^{*}v_{0}^{*}v_{3}^{*})\epsilon^{3}}{(v_{4}v_{0}v_{3})}\frac{(v_{4}^{*}v_{1}v_{2}^{*})\epsilon^{2}}{(v_{4}v_{1}v_{2})}$ $\frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\epsilon}^{3}}{(v_{4}v_{0}v_{2})^{3}} - \frac{(v_{4}^{*}v_{1}^{*}v_{3}^{*})_{\epsilon}^{3}}{(v_{4}v_{1}v_{3})^{3}} \bigotimes \frac{(v_{4}v_{0}v_{1})(v_{4}v_{2}v_{3})}{(v_{4}v_{0}v_{2})(v_{4}v_{1}v_{3})} \wedge$ $(v_1v_2v_3)(v_0v_2v_3)(v_0v_1v_3)(v_0v_1v_2)$ $\left(3\frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\varepsilon^{3}}}{(v_{4}v_{0}v_{2})}+3\frac{(v_{4}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{4}v_{1}v_{3})}-3\frac{(v_{4}^{*}v_{0}^{*}v_{1}^{*})_{\varepsilon^{3}}}{(v_{4}v_{0}v_{1})}-3\frac{(v_{4}^{*}v_{2}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{4}v_{2}v_{3})}\right)$ $3\frac{(v_4^*v_0^*v_2^*)_{\varepsilon^2}}{(v_4^*v_0^*v_2^*)_{\varepsilon}}\frac{(v_4^*v_0^*v_2^*)_{\varepsilon}}{(v_4^*v_0^*v_2^*)_{\varepsilon}}$ $(v_4 v_0 v_2) \quad (v_4 v_0 v_2)$ $3\frac{(v_4^*v_1^*v_3^*)_{\varepsilon^2}}{(v_4v_1v_3)}\frac{(v_4^*v_1^*v_3^*)_{\varepsilon}}{(v_4v_1v_3)} + 3\frac{(v_4^*v_0^*v_1^*)_{\varepsilon^2}}{(v_4v_0v_1)}\frac{(v_4^*v_0^*v_1^*)_{\varepsilon}}{(v_4v_0v_1)} +$ $(v_4v_1v_3)$ $(v_4v_1v_3)$ $3\frac{(v_{4}^{*}v_{2}^{*}v_{3}^{*})_{\varepsilon^{2}}}{(v_{4}v_{2}v_{3})}\frac{(v_{4}^{*}v_{2}^{*}v_{3}^{*})_{\varepsilon}}{(v_{4}v_{2}v_{3})} + \frac{(v_{4}^{*}v_{0}^{*}v_{2}^{*})_{\varepsilon}^{3}}{(v_{4}v_{0}v_{2})^{3}} \\ + \frac{(v_{4}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}^{3}}{(v_{4}v_{1}v_{3})} - \frac{(v_{4}^{*}v_{0}^{*}v_{1}^{*})_{\varepsilon}^{3}}{(v_{4}v_{0}v_{1})^{3}} - \frac{(v_{4}^{*}v_{2}^{*}v_{3}^{*})_{\varepsilon}^{3}}{(v_{4}v_{0}v_{2})^{3}}\right) \bigotimes \frac{(v_{4}v_{0}v_{3})(v_{4}v_{2}v_{2})}{(v_{4}v_{0}v_{2})(v_{4}v_{1}v_{3})} \wedge$ $(v_1v_2v_3)(v_0v_2v_3)(v_0v_1v_3)(v_0v_1v_2) +$

$$\sum_{j=0}^{5} \left\{ 3 \frac{(v_{0}^{*}, \dots, \hat{v}_{j}^{*}, \dots, v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}, \dots, \hat{v}_{j}, \dots, v_{3})} - 3 \frac{(v_{0}^{*}, \dots, \hat{v}_{j}^{*}, \dots, v_{3}^{*})_{\varepsilon}(v_{0}^{*}, \dots, \hat{v}_{j}^{*}, \dots, v_{3}^{*})_{\varepsilon^{2}}}{(v_{0}, \dots, \hat{v}_{j}, \dots, v_{3})^{2}} + \frac{(l_{0}^{*}, \dots, \hat{v}_{j}^{*}, \dots, v_{3}^{*})_{\varepsilon}^{2}}{(v_{0}, \dots, \hat{v}_{j}, \dots, v_{3})^{2}} \right\} \bigotimes (1 - y_{4}) \bigwedge 2^{y_{4}} \right\}$$

we use the relations $x \otimes \frac{y}{z} = x \otimes y - x \otimes z$ and $x \otimes yz = x \otimes y + x \otimes z$ for simplification which gives us a total of 576 terms. All of these terms will be of three different types $3 \frac{(v_i^*, v_j^*, v_k^*)_{\varepsilon^3}}{(v_i, v_j, v_k)} \otimes l \wedge m$, $\frac{(v_i^*, v_j^*, v_k^*)_{\varepsilon^2}}{(v_i, v_j, v_k)} \otimes l \wedge m$ and $\frac{(v_i^*, v_j^*, v_k^*)_{\varepsilon^3}}{(v_i, v_j, v_k)^3} \otimes l \wedge m$ and will contain 192 terms each.

In a similar fashion we can determine S_0, S_1, S_2 and S_3 and then we substitute into (22) . We contain the terms whose common factor factors are identical $\frac{\Delta(v_i^*, v_j^*, v_k^*)}{\Delta(v_i, v_j, v_k)} \otimes \cdots$. For example terms having common factor $\frac{\Delta(v_4^*, v_2^*, v_3^*)_e^3}{\Delta(v_4, v_2, v_3)} \otimes \cdots$ make the expression

 $\begin{array}{l} -3 \frac{\Delta(v_4^*, v_2^*, v_3^*)_{\delta}^3}{\Delta(v_4, v_2, v_3)} \otimes (\Delta(v_0, v_3, v_4) \wedge \Delta(v_0, v_2, v_3) - \\ \Delta(v_0, v_3, v_4) \wedge \Delta(v_0, v_2, v_4) - \Delta(v_0, v_2, v_4) \wedge \Delta(v_0, v_2, v_3) \\ +\Delta(v_1, v_3, v_4) \wedge \Delta(v_1, v_2, v_4) - \Delta(v_1, v_3, v_4) \wedge \\ \Delta(v_1, v_2, v_3) + \Delta(v_1, v_2, v_4) \wedge \Delta(v_1, v_2, v_3)) \end{array}$

This is the simplified value of $\delta^1 \circ \pi^3_{1,\varepsilon^3}(\mathfrak{P}^9_{04})$. Move to the other map

$$\delta^{2} \circ \pi_{1,\varepsilon^{2}}^{3}(\mathbb{V}_{04}^{*}) = \sum_{i=0}^{4} (-1)^{i} \left\{ \left(\frac{3b_{3i}}{a_{i}} - \frac{3b_{1i}b_{2i}}{a_{i}^{2}} + \frac{b_{1i}^{3}}{a_{i}^{3}} \right) \\ \wedge \left(\frac{3b_{3i}}{1-a_{i}} - \frac{3b_{1i}b_{2i}}{(1-a_{i})^{2}} + \frac{b_{1i}^{3}}{(1-a_{i})^{3}} \right) \wedge x_{i} \right\}$$
(31)

This can be simplified by first the expanding the sum for i = 0, ..., 4 and then using $p \land (q + r) = p \land q + p \land r$. The sum of (31) and (22) gives the value of *LHS* of the theorem which is identical with the *RHS* of theorem.

Theorem 2.3 *The diagram below commutes.*

Proof. Initially we have 720 terms due to the expansion of the map π_{2,ε^3}^3 according to (8). But many of them are identical due to the symmetry $\Delta(v_i, v_j, v_k) = \Delta(v_i, v_k, v_i) = \Delta(v_i, v_i, v_k)$..., so there will remain only

120 distinct terms. According to the Definition (8), we π_{1,ϵ^3}^3 as (see Theorem.4.3.3 of [12]) have

$$\begin{aligned} \pi_{2,\varepsilon^{3}}^{3}(\mathbb{V}_{05}^{*} = \\ \frac{2}{45} \operatorname{Alt}_{6} \langle r_{3}(\mathbb{V}_{05}); r_{3,\varepsilon}(\mathbb{V}_{05}^{*}), r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*}), r_{3,\varepsilon^{3}}(\mathbb{V}_{05}^{*})]_{3}^{3} \quad (32) \\ \operatorname{Now} \\ \partial_{\varepsilon^{2}} \circ \pi_{2,\varepsilon^{2}}^{3}(\mathbb{V}_{05}^{*}) \\ &= \frac{2}{45} \operatorname{Alt}_{6} \{ \langle r_{3}(\mathbb{V}_{05}); r_{3,\varepsilon}(\mathbb{V}_{05}^{*}), r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*}), r_{3,\varepsilon^{3}}(\mathbb{V}_{05}^{*})]_{2}^{2} \\ \otimes r_{3}(\mathbb{V}_{05}) + (3\frac{r_{3,\varepsilon^{3}}(\mathbb{V}_{05}^{*})}{r_{3}(\mathbb{V}_{05})} - 3\frac{r_{3,\varepsilon}(\mathbb{V}_{05}^{*})}{r_{3}(\mathbb{V}_{05})}\frac{r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*})}{r_{3}(\mathbb{V}_{05})} + \\ \frac{r_{3,\varepsilon}^{3}(\mathbb{V}_{05}^{*})}{r_{3}^{*}(\mathbb{V}_{05})} \otimes [r_{3}(\mathbb{V}_{05})]_{2} \} \quad (33) \end{aligned}$$

With the help of the equations (9), (10), (11) and (12) we $\pi_{1,\varepsilon^3}^3 \circ d(\mathbb{V}_{05}^*)$ can write

$$3\frac{r_{3,\varepsilon^{3}}(\mathbb{V}_{05})}{r_{3}(\mathbb{V}_{05})} - 3\frac{r_{3,\varepsilon}(\mathbb{V}_{05})}{r_{3}(\mathbb{V}_{05})}\frac{r_{3,\varepsilon^{2}}(\mathbb{V}_{05})}{r_{3}(\mathbb{V}_{05})} + \frac{r_{3,\varepsilon}^{3}(\mathbb{V}_{05})}{r_{3}^{3}(\mathbb{V}_{05})}$$

$$= 3(\frac{(v_{0}v_{1}v_{3})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{3})} + \frac{(v_{1}^{*}v_{2}^{*}v_{4}^{*})_{\varepsilon^{3}}}{(v_{1}v_{2}v_{4})} + \frac{(v_{2}^{*}v_{0}^{*}v_{5})_{\varepsilon^{3}}}{(v_{2}v_{0}v_{5})} - \frac{(v_{0}^{*}v_{1}^{*}v_{4}^{*})_{\varepsilon^{3}}}{(v_{2}v_{0}v_{3})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{2}^{*}v_{0}^{*}v_{5})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{2}^{*}v_{0}^{*}v_{5})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{2}^{*}v_{0}^{*}v_{5})_{\varepsilon}}{(v_{0}v_{0}v_{5})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{0}v_{1}v_{4})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{2}v_{0}v_{5})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{0}v_{1}v_{4})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{1}v_{2}v_{0}v_{5})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{1}v_{2}v_{0}v_{5})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{1}v_{2}v_{4})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{1}v_{2}v_{0}v_{5})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}}{(v_{1}v_{2}v_{0}v_{5})} + \frac{(v_{1}^{*}v_{2}^{*}v_{5})_{\varepsilon}^{*}}{(v_{2}v_{0}v_{3})^{3}} + \frac{(v_{1}^{*}v_{2}^{*}v_{0}^{*}v_{3})_{\varepsilon}^{3}}{(v_{2}v_{0}v_{0})^{3}} + \frac{(v_{1}^{*}v_{2}^{*}v_{0}^{*}v_{5})_{\varepsilon}^{3}}{(v_{2}v_{0}v_{3})^{3}} + \frac{(v_{1}^{*}v_{2}^{*}v_{0$$

$$\frac{\frac{2}{45} \operatorname{Alt}_{6} \{ \langle r_{3}(\mathbb{V}_{05}); r_{3,\varepsilon}(\mathbb{V}_{05}^{*}), r_{3,\varepsilon^{2}}(\mathbb{V}_{05}^{*}), r_{3,\varepsilon^{3}}(\mathbb{V}_{05}^{*}) \}_{2}^{3} \otimes r_{3}(\mathbb{V}_{05}) \}_{2}^{2} \otimes r_{3}(\mathbb{V}_{05}) \}_{2}^{2} \otimes r_{3}(\mathbb{V}_{05}) + 3\left(\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{3})_{\varepsilon}} + \frac{(v_{1}^{*}v_{2}^{*}v_{4}^{*})_{\varepsilon^{3}}}{(v_{1}v_{2}v_{4})_{\varepsilon}} + \frac{(v_{2}^{*}v_{0}^{*}v_{5}^{*})_{\varepsilon^{3}}}{(v_{2}v_{0}v_{5})} - \frac{(v_{0}^{*}v_{1}^{*}v_{4}^{*})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{4})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{2}v_{0})} + \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{2}v_{1})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{1}v_{3})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} + \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} - \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} - \frac{(v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} - \frac{(v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} - \frac{(v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} - \frac{(v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} - \frac{(v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*}v_{0}^{*})_{\varepsilon}}{(v_{0}v_{0}v_{0}v_{0})} - \frac{(v_{0}^{*}v_{0}^$$

Since we are using the same technique already used in the proof of Theorem.5.6 of [5], it seems unnecessary to write all steps. Going through the same procedure we can write (33) as

$$= \frac{1}{3} \operatorname{Alt}_{6} \{ \langle r(v_{0} | v_{1}v_{2}v_{3}v_{4}); r_{\varepsilon}(v_{0}^{*} | v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*}), \\ r_{\varepsilon^{2}}(v_{0}^{*} | v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*}), r_{\varepsilon^{3}}(v_{0}^{*} | v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*})]_{2}^{3} \otimes \\ (v_{0}v_{1}v_{3}) + \left(3 \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{3})} - 3 \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})^{2}} + \\ \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}^{3}}{(v_{0}v_{1}v_{3})^{3}} \otimes [r(v_{0} | v_{1}v_{2}v_{3}v_{4})]_{2} \}$$
(38)

Before going to the left hand side we rewrite the map

 $\pi_{1,\varepsilon^3}^3(\mathbb{V}_{05}^*) = \frac{1}{3} \operatorname{Alt}_5\{\langle r(v_0|v_1v_2v_3v_4); r_{\varepsilon}(v_0^*|v_1^*v_2^*v_3^*v_4^*),$ $r_{\varepsilon^{2}}(v_{0}^{*}|v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*}), r_{\varepsilon^{3}}(v_{0}^{*}|v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*})]_{2}^{2} \otimes (v_{0}v_{1}v_{2}) + \left(3\frac{(v_{0}^{*}v_{1}^{*}v_{2}^{*})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{2})} - 3\frac{(v_{0}^{*}v_{1}^{*}v_{2}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{2})}\frac{(v_{0}^{*}v_{1}^{*}v_{2}^{*})_{\varepsilon^{2}}}{(v_{0}v_{1}v_{2})} + \frac{(v_{0}^{*}v_{1}^{*}v_{2}^{*})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{2})^{3}}\right) \otimes [r(v_{0}|v_{1}v_{2}v_{3}v_{4})]_{2}\}$ (39) Now the left hand side of the theorem is $\pi^{3}_{1,\epsilon^{3}} \circ d(\mathbb{V}^{*}_{05}) = \pi^{3}_{1,\epsilon^{3}} \left(\sum_{i=0}^{5} (-1)^{i} (v_{0}^{*}, ..., \hat{v}_{i}, ..., v_{5}^{*}) \right)$ Applying the definition (35) and using the cycle (v_0, \dots, v_5) after the expansion of Alt₅ we ge^(B2) $=\frac{1}{3}\text{Alt}_{6}\{\langle r(v_{0}|v_{1}v_{2}v_{3}v_{4}); r_{\varepsilon}(v_{0}^{*}|v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*}),$ $r_{\varepsilon^{2}}(v_{0}^{*}|v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*}), r_{\varepsilon^{3}}(v_{0}^{*}|v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*})]_{2}^{3} \otimes (v_{0}v_{1}v_{2}) + \left(3\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{3})} - 3\frac{(v_{0}^{*}v_{1}^{*}v_{2}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{2})}\frac{(v_{0}^{*}v_{1}^{*}v_{2}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{2})} + \frac{(v_{0}^{*}v_{1}^{*}v_{2}^{*})_{\varepsilon}^{2}}{(v_{0}v_{1}v_{2})^{3}}\right) \otimes [r(v_{0}|v_{1}v_{2}v_{3}v_{4})]_{2}\}$ Using the cycle $(v_{2}v_{3})$ we get $\pi^{3}_{1 \varepsilon^{3}} \circ d(\mathbb{V}^{*}_{05})$ $= -\frac{1}{3} \text{Alt}_{6} \{ \langle r(v_{0} | v_{1} v_{2} v_{3} v_{4}); r_{\varepsilon}(v_{0}^{*} | v_{1}^{*} v_{2}^{*} v_{3}^{*} v_{4}^{*}),$ $(v_{0}v_{1}v_{3}) + \left(3\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*}v_{4}^{*})}{(v_{0}v_{1}v_{3})} - 3\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})}\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})} + \right)$ $\frac{(v_0^* v_1^* v_3^*)_{\varepsilon}^3}{(v_0 v_1 v_3)^3} \bigg) \otimes [r(v_0 | v_1 v_2 v_3 v_4)]_2 \} \}$ At last applying the two term relation we get the required expression with correct sign $\pi_{1,\varepsilon^3}^{\bar{3}} \circ d(\mathbb{V}_{05}^*)$

$$\frac{\frac{1}{3}\text{Alt}_{6}\{\langle r(v_{0}|v_{1}v_{2}v_{3}v_{4}); r_{\varepsilon}(v_{0}^{*}|v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*}), r_{\varepsilon^{2}}(v_{0}^{*}|v_{1}^{*}v_{2}^{*}v_{3}^{*}v_{4}^{*}), r_{\varepsilon^{3}}(v_{0}v_{1}v_{3}) + \left(3\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon^{3}}}{(v_{0}v_{1}v_{3})} - 3\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})}\frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon^{2}}}{(v_{0}v_{1}v_{3})^{*}}\right) + \frac{(v_{0}^{*}v_{1}^{*}v_{3}^{*})_{\varepsilon}}{(v_{0}v_{1}v_{3})^{*}} \otimes [r(v_{0}|v_{1}v_{2}v_{3}v_{4})]_{2}\}\}$$

Corollary 2.4 Both of the following chains are complexes

1.
$$C_5(A_{F[\varepsilon]_4}^4) \xrightarrow{d'} C_4(A_{F[\varepsilon]_4}^3) \xrightarrow{\pi_{0,\varepsilon^3}^3} F \otimes F^{\times} \bigoplus \wedge^3 F$$

2. $C_6(A_{F[\varepsilon]_4}^4) \xrightarrow{d'} C_5(A_{F[\varepsilon]_4}^3) \xrightarrow{\pi_{1,\varepsilon^3}^3} (T\mathcal{B}_2^3(F) \otimes F^{\times}) \oplus$
 $(F \otimes \mathcal{B}_2(F))$

Proof. Direct calculations lead us to have $\pi^3_{1,\varepsilon^3} \circ d' = \pi^3_{0,\varepsilon^3} \circ d' = 0$

CONCLUSION III.

This work exhibits that the tangent group $TB_3^3(F)$ and its

associated relations are valid for the order three. The above results motivate us to compute higher order tangent groups and their relative identities for weight for different weights.

IV. REFERENCE S

[1] Cathelineau, J-L., The tangent complex to the Bloch-Suslin complex, Bull. Soc. Math. France 135 (2007) 565-59

[2] Elbaz-Vincent, Ph., and Gangl, H, On Poly(ana)logs I, Compositio Mathematica, 130, 161-210 (2002).

[3] Cathelineau, J-L., The tangent complex to the Bloch-Suslin complex, Bull. Soc. Math. France 135 (2007) 565-59

[4] Elbaz-Vincent, Ph., and Gangl, H, On Poly(ana)logs I, Compositio Mathematica, 130, 161-210 (2002).

[5] [Goncharov, A. B., Geometry of Configurations, Polylogarithms and Motivic Cohomology, Adv. Math., First Author - Sadaqat Hussain, PhD, Department of 114(1995) 197-318.

[6] Hussain, S. and Siddiqui, R. Projected Five Term Relation in $T\mathcal{B}_2^2(F)$, International Journal of Algebra, Vol. Second Author – Shams-ur-Rehman, PhD, Department of 6, 2012, no. 28, 1353 - 1363.

[13] Siddiqui R., Geometry of configurations in tangent groups, AIMS Mathematics 2020, Vol. 5(1): 522-545. doi: 10.3934/math.2020035

[14] Siddiqui, R. Configuration Complexes and Tangential and Infinitesimal versions of Polylogarithmic Complexes, Doctoral thesis, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/586/ (2010)

[15] Hussain, S. M. A.A. Mahbub, N. J. Nasu, H. Zheng Stabilized lowest equal order mixed finite element method for the Oseen viscoelastic fluid flow, Advances in Difference Equations 2018: 461.

[16] Hussain, S, A. Batool, Md. A.A Mahbub, N. J. Nasu, H. Zheng, SUPG Approximation for the Oseen viscoelastic fluid flow with stabilized lowest equal order mixed finite Mathematics 2019, 7(2), 128. element method.

Authors

Mathematics, University of Baltistan Skardu, Gilgit Baltistan, Pakistan sadagat.hussain@uobs.edu.pk

Mathematical Sciences Karakoram International University Gilgit. Pakistan shams.rahman@kiu.edu.pk

[7] Hussain, S. and Siddiqui, R. Grassmannian Complex Third Author- Suhail Abbas, , PhD, Department of and Second Order Tangent Complex, Punjab University Mathematical Sciences Karakoram International University Journal of Mathematics, Vol. 48(2), 2016, 91 - 111. Gilgit. Pakistan suhail.abbas@kiu.edu.pk

[8] Hussain S. and Siddiqui R., Projective Configurations and Variant of Cathelineau Complex , Journal of Prime Research in Mathematics, Vol. 6, 2016, 24 - 34.

[9] Hussain S. and Siddiqui, R. Morphisms Between Grassmannian Complex and Higher Order Tangent Complex, Communications in Mathematics and Applications 2019, Vol. 10, No. 3, 509-518, doi: 10.26713/cma.v10i3.1220.

[10]Khalid M., Mariam Sultana, Javed Khan and Azhar Iqbal Geometry of Tangential and Configuration Chain Complexes for Higher Weights, Punjab University Journal of Mathematics, Vol. 52(2), 2020, 29 - 55.

[11]Khalid M., J. Khan and A. Iqbal Generalized geometry of Goncharov and configuration complexes. Turk J. Math. (2018), Vol. 42: 1509-1527, doi:10.3906/mat-1702-25.

[12] Siddiqui, R. Infinitesimal tangent and to polylogarithmic complexes for higher weight, AIMS 2019, Mathematics Vol. 4(4): 1248-1257. doi. 10.3934/math.2019.4.1248.

Fourth Author - Raziuddin Siddiqui, PhD, Department of Mathematics, IBA Karachi, Sindh, Pakistan rsiddiqui@iba.edu.pk

Fifth Author – – Muhammad Ilyas, PhD, Department of Mathematics, Government College University Hyderabad, Sindh, Pakistan <u>dr.m.ilyas@gcuh.edu.pk</u>

Correspondence Author – Shahid Hussain, PhD, Department of Mathematics, University of Baltistan Skardu, Gilgit Baltistan, Pakistan shahid8310@yahoo.com