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Abstract  

 

The Pantograph Delay Differential Equation (PDDE), which incorporates a linear functional 

argument, is the subject of this study, which is a generalization of a functional differential 

equation. A new Novel Analytical Method (NAM) is used in this article to solve the Pantograph 

Delay Differential Equation. This approach uses simple calculus to perform long-term 

computations and is unrelated to any recurrence relation, therefore we must be cautious 

regarding its convergence. The resultant solutions are more physically realistic since they solve 

non-linear problems without needing linearization, discretization, or perturbation. 

Furthermore, iterations may be converged to Exact Solutions rather quickly, resulting in more 

accurate findings. Several illustrated examples are provided below to demonstrate the 

technique's efficacy and dependability, especially in non-linear scenarios. 

 

Keywords: Pantograph Delay Differential Equations, Novel Analytical Method, Tylor Series, 

Convergence Analysis. 

 
1. Introduction 

Some differential equations involving time delay are called Delay Differential Equations 

(DDEs). At a particular time, the behavior of an unknown variable in a differential equation, 

relies on the behavior of this variable at earlier times, resulting in a time delay in the system. 

Many academics have investigated this differential equation family and sought numerical and 

approximate solutions. Furthermore, Pantograph Delay Differential Equations (PDDEs) have 

gained a lot of attention in the area of DDEs. PDDEs  were initially proposed by Ockendon 

and Tayler [1]. Research related to some PDDEs applications can easily be seen in [1-4]. 
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Many scholars have investigated the numerical solution of PDDEs since their 

introduction and numerous applications. We'd like to highlight a few of the techniques that 

have been offered. Boubaker Polynomials were utilized to solve PDDEs in [5]. The study in 

[6] provided a sequence of functions for generalized PDDEs based on the Variational Iteration 

Approach. Sedaghat et al. [7] provided a numerical technique for a pantograph equation based 

on Transferred Chebyshev Polynomials. The author in [8] also concentrated on the Chebyshev 

Polynomial approach for PDDEs. Cevik [9] proposed a compound strategy for solving PDDEs 

that combines the Perturbation Method with an iteration algorithm. In [10, 11], the solution of 

high-order PDDEs was examined by the method of Exponential Polynomials. The authors of 

[12] described Homotopy Perturbation Approach for DDEs. The reproducing kernel was used 

to solve a DDEs in [13]. Authors of [14,15] solved Pantograph Equations in general form using 

the Bernoulli Collocation Method. 

Bessel Polynomials were used in [16] to get an approximated solution to PDDEs with 

Variable Coefficients. In [17] to solve Pantograph Equations, the Jacobi Rational Gauss 

Collocation Technique was presented. The Runge-Kutta Techniques for a family of Neutral 

Infinite DDEs with varying proportional delays were introduced in [18,19]. Bernstein 

Polynomials were used in [20,21] to approximation solve the Generalized Pantograph 

Equations. In addition, in [22], the Hermite Polynomials were introduced to provide numerical 

solutions to Pantograph Problem in a generalized form with Variable Coefficients. In [23, 24], 

writers explored the stability of ɵ-methods for solving a Generalized Pantograph Problem. In 

[8], the Tau Approach and the Chebyshev Polynomials were proposed for solving Pantograph 

Equations. For the Pantograph Equations, Xu and Huang [25, 26] discovered Discontinuous 

and Continuous Galerkin Solutions. Manuscript [3] explored the numerical solution of 

Pantograph Equations by using Trapezoidal Rule discretization. Rational Functions were used 

in [17,27] to estimate a Generalized Pantograph Equation over a semi-infinite interval. 

Furthermore, in studies mentioned in [28-30], Taylor Polynomials were utilized to approximate 

the solution of the Pantograph Equations. 

Despite the strategies given above, a proficient and convergent method with low 

complexity and high accuracy is required to solve PDDEs. In this paper, we provide a Novel 

Analytical Approach, proposed by [31], for solving Pantograph-Type Delay Differential 

Equations numerically. Several academics labeled this novel approach as a Novel Analytical 

Method [32-34,36]. Recently, two of the paper's authors examined approximate solutions to 

Time Space Fractional Linear and Nonlinear KdV Equations [35]. The Taylor Series is used 

as an effective tool for solving nonlinear equations in this technique. The suggested technique 
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yields Taylor Series solutions by combining the linear and nonlinear parts and then proceeds 

using just the calculus of many variables. In comparison to the Adomain Decomposition 

Method, this new variation is believed to be more straightforward to grasp. A thorough survey, 

on the other hand, indicates that the Delay Differential Equation has not yet been examined 

using this approach. These are the objectives for the current study, which focuses on solving 

PDDEs. This research includes a variety of numerical examples. It also compares the 

associated findings to the solutions (available in the existing literature) to prove the suggested 

technique's exceptional accuracy. The proposed approach may be used for all DDEs. 

The remainder of this research report is organized as follows. Section 2 provides a 

comprehensive review of the Novel Analytical Method (NAM). Its convergence is also 

covered in section 3. The approach for solving a class of Pantograph Delay Differential 

Equations with graphical representation is shown in Section 4. Section 5 will conclude with 

some suggestions. 

 
2. Description of Proposed Methodology 

Consider Pantograph Delay Differential Equations of second order 

𝜉𝑡𝑡(𝑡) = Ψ(𝑘𝜉𝑡, 𝑘𝑡, 𝑘𝜉, … )    (1) 

with initial conditions 

𝜉(0) = 𝜉0 and 𝜉𝑡(0) = 𝜉1     (2) 

Integrating both sides of Eq. (1) from 0 to 𝑡, we get 

𝜉𝑡(𝑡) = 𝜉1 + ∫ Ψ[𝜉] 𝑑𝑡
𝑡

0
     (3) 

Where  Ψ[𝜉] = Ψ(𝑘𝜉𝑡, 𝑘𝑡, 𝑘𝜉, … ) 

Again integrating both sides of Eq. (3) from 0 to 𝑡, we get 

𝜉(𝑡) = 𝜉0 + 𝜉1𝑡 + ∫ ∫  Ψ[𝜉] 𝑑𝑡𝑑𝑡
𝑡

0

𝑡

0
    (4) 

The Taylor series is extended for Ψ[𝜉] about 𝑡 = 0 which is  

Ψ[𝜉] = Ψ[𝜉0] + Ψ′[𝜉0]𝑡 + Ψ′′[𝜉0]
𝑡2

2!
+ Ψ′′′[𝜉0]

𝑡3

3!
+ ⋯ +Ψ(n)[𝜉0]

𝑡𝑛

𝑛!
+ ⋯      (5) 

Now putting Ψ[𝜉] into Eq. (4), we get 

𝜉(𝑡) = 𝜉0 + 𝜉1𝑡

+ ∫ ∫ [Ψ[𝜉0] + Ψ′[𝜉0]𝑡 + Ψ′′[𝜉0]
𝑡2

2!
+ Ψ′′′[𝜉0]

𝑡3

3!
+ ⋯ +Ψ(n)[𝜉0]

𝑡𝑛

𝑛!

𝑡

0

𝑡

0

+ ⋯ ]   𝑑𝑡𝑑𝑡 
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𝜉(𝑡) = 𝜉0 + 𝜉1𝑡 + Ψ[𝜉0]
𝑡2

2!
+ Ψ′[𝜉0]

𝑡3

3!
+ Ψ′′[𝜉0]

𝑡4

4!
+ Ψ′′′[𝜉0]

𝑡5

5!
+ ⋯ +Ψ(n−2)[𝜉0]

𝑡𝑛

𝑛!

+ ⋯ 

                      𝜉(𝑡) = 𝑎0 + 𝑎1𝑡 + a2
𝑡2

2!
+ a3

𝑡3

3!
+ a4

𝑡4

4!
+ a5

𝑡5

5!
+ ⋯ + an

𝑡𝑛

𝑛!
+ ⋯                (6) 

 

Where  

𝑎0 = 𝜉0 

𝑎1 = 𝜉1 

𝑎2 = Ψ[𝜉0] 

𝑎3 = Ψ′′[𝜉0] 

⋮ 

𝑎𝑛 = Ψ(n−2)[𝜉0] 

Where 𝑛 denotes the highest derivative of 𝜉(𝑡). By the expansion of Eq. (6) with the help of 

Taylor’s Series about 𝑡 = 0 for 𝜉, we have 

𝑎0 = 𝜉(0) 

𝑎1 =
𝑑

𝑑𝑡
𝜉(0) 

𝑎2 =
𝑑2

𝑑𝑡2
𝜉(0) 

𝑎3 =
𝑑3

𝑑𝑡3
𝜉(0) 

⋮ 

𝑎𝑛 =
𝑑𝑛

𝑑𝑡𝑛
𝜉(0) 

3. Convergence of Proposed Method 

Consider the Pantagraph Delay Differential Equation  in the following form 

𝜉(𝑡) = Ψ(𝑘𝜉(𝑡)),    (7) 

where Ψ is a nonlinear operator. Then the solution obtained by the presented technique is 

equivalent to the following sequence ω𝑞 = ∑ 𝜉𝑝
𝑞
𝑝=0 = ∑ 𝛿𝑝

(∆𝑡)𝑝

(𝑝)!

𝑞
𝑝=0 . 

Theorem 3.1: Let 𝐻 be a Hilbert space. Consider an operator Ψ: 𝐻 → 𝐻 such that it admits a 

solution in the form of 𝜉 as mentioned in (7). The approximate solution ∑ 𝜉𝑝 =∞
𝑝=0

∑ 𝛿𝑝
(∆𝑡)𝑝

(𝑝)!
∞
𝑝=0   is converged to the exact solution of 𝜉, when ∃ 0 ≤ 𝛿 < 1, ‖𝜉𝑝+1‖ ≤

𝛿‖𝜉𝑝‖ ∀ 𝑝 ∈ ℕ ⋃  {0}. 
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proof: we will prove that {𝑆𝑞}
𝑞=0

∞
 is a converged to Cauchy Sequence, 

‖ω𝑞+1 − ω𝑞 ‖ = ‖𝜉𝑞+1‖ ≤ 𝛿‖𝜉𝑞‖ ≤ 𝛿2‖𝜉𝑞−1‖ ≤ ⋯ ≤ 𝛿𝑞‖𝜉1‖ ≤ 𝛿𝑞+1‖𝜉0‖. 

Now for 𝑞, 𝑟 ∈  ℕ, 𝑞 ≥ 𝑟, we get 

‖ω𝑞 − ω𝑟‖ = ‖(ω𝑞 − ω𝑞−1) + (ω𝑞−1 − ω𝑞−2) + ⋯ + (ω𝑟+1 − ω𝑟)‖

≤ ‖(ω𝑞 − ω𝑞−1)‖ + ‖(ω𝑞−1 − ω𝑞−2)‖ + ⋯ + ‖(ω𝑟+1 − ω𝑟)‖

≤ 𝛿𝑞‖𝜉0‖ + 𝛿𝑞−1‖𝜉0‖ + ⋯ + 𝛿𝑟+1‖𝜉0‖ ≤  (𝛿𝑟+1 + 𝛿𝑟+2 + ⋯ + 𝛿𝑞)‖𝜉0‖

= 𝛿𝑟+1
1 − 𝛿𝑞−𝑟

1 − 𝛿
‖𝜉0‖ 

Hence lim
𝑞,𝑟→∞

‖ω𝑞 − ω𝑟‖ = 0 i.e., {ω𝑞}
𝑞=0

∞
 is a Cauchy Sequence in Hilbert Space 𝐻. Thus 

there exists ω ∈ 𝐻 such that lim
𝑞→∞

ω𝑞 = ω where ω = 𝜉. 

Definition 3.2: For every 𝑞 ∈  ℕ ⋃  {0}, we define 𝛿𝑞 = {

‖𝜉𝑞+1‖

‖𝜉𝑞‖
      , ‖𝜉𝑞‖ ≠ 0

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
. 

Corollary 3.3: From theorem 3.1, ∑ 𝜉𝑝 =∞
𝑝=0 ∑ 𝛿𝑛

∞
𝑝=0

(△𝑡)𝑝

(𝑝)!
 is converged to exact solution 𝜉 

when 0 ≤ δ𝑝 < 1, 𝑝 = 0,1,2, …. So, the analytical solution converges. In addition, it can be 

further verified by the computational results presented in the form of figures and graphs below. 

 

4. Numerical Application 

Example 4.1. Consider the following Nonlinear Pantagraph Delay Differential Equation of 

first order [37]: 

𝜉′(𝑡) = 𝐴𝜉(𝑡) + 𝐵𝜉(𝑘𝑡) + cos(𝑡) − 𝐴 sin(𝑡) − 𝐵sin(𝑘𝑡)   (8) 

where 0 ≤ 𝑡 and 0 < 𝑘 < 1 with initial condition 𝜉(0) = 0. The exact solution of Eq. (8) is 

𝜉(𝑡) = sin (𝑡). We assumed that 𝐴 = −1 and 𝐵 =
1

2
. Calculated the higher-order derivatives 

of Eq. (8) then, put 𝑡 = 0 in each derivatives term, and by using initial conditions, we obtained 

the following results: 

𝑎0 = 0 

𝑎1 = 1 

𝑎2 = 0 

𝑎3 = −1 

𝑎4 = 0 

⋮ 

(9) 

Putting Eq. (9) into Eq. (6), we get  
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𝜉′(𝑡) = 1 −
𝑡3

3!
+

𝑡5

5!
−

𝑡7

7!
+ ⋯ + (−1)𝑛 𝑡2𝑛+1

(2𝑛+1)!
+ ⋯              (10) 

 

 

Figure 1.  Graphical comparison of the Exact solution and numerical solution 

for Example 4.1. 

 

 

Figure 2. Absolute Error graph of the obtained numerical results by using NAM 

for Example 4.1. 

 

From Figure 1, we can see that NAM is very closely equal to the exact solution of test 

Example 4.1. It has been also observed that the numerical solution converges to the exact 

solution as the number of iterations increases at 𝑘 =
1

2
. Figure 2 shows the absolute errors 

of Example 4.1 at t ranges from zero to unity. It is seen from figure 2 that we have very 

small absolute errors in 𝑡 𝜖[0,1] by using the Novel Analytical Method, which shows its 

shows accuracy in convergence. Table 1 shows the agreement between the obtained 

approximate solutions and the exact ones via calculating the 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 =

|𝜉𝑒𝑥𝑎𝑐𝑡(𝑡) − 𝜉𝑎𝑝𝑝𝑟𝑜𝑥(𝑡)|. 
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Table 1. Comparison between exact and NAM for Example 4.1. 

𝒕 Exact NAM Absolute Error 

0.2 0.198669 0.198669 2.77556 × 10−17 

0.4 0.389418 0.389418 5.55112 × 10−17 

0.6 0.564642 0.564642 0.00 

0.8 0.717356 0.717356 1.11022 × 10−16 

1.0 0.841471 0.841471 0.00 
  

 

Example 4.2. Consider the following Nonlinear Pantograph Delay Differential Equation of 

first order [37]: 

𝜉′(𝑡) = 𝐴𝜉(𝑡) + 𝐵𝑒𝑘𝑡 𝜉(𝑘𝑡)                                           (11) 

where 0 ≤ 𝑡 and 0 < 𝑘 < 1 with initial condition 𝜉(0) = 1. The exact solution of Eq. (11) is 

𝜉(𝑡) = 𝑒𝑡 at 𝑘 =
1

2
. We assumed that 𝐴 =

1

2
 and 𝐵 =

1

2
. Calculated the higher-order derivatives  

 

Figure 3. Graphical comparison of the Exact solution and numerical solution 

for Example 4.2. by using NAM. 

 

 

Figure 4. Absolute Error graph of the obtained numerical results by using 

NAM for Example 4.2. 
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Figure 5. Different values of k were obtained numerically by using NAM for 

Example 4.2. 

of Eq. (11) then, put 𝑡 = 0 in each derivatives term and by using initial conditions, we obtained 

the following results:  

𝑎0 = 1 

𝑎2 =
1

2
+ 𝑘 

𝑎3 =
3𝑘2

2
+

1

2
(
1

2
+ 𝑘) +

1

2
𝑘2(

1

2
+ 𝑘) 

⋮ 

(12) 

Putting Eq. (12) into Eq. (6), we get  

𝜉(𝑡) = 1 + 𝑡 +
1

4
(1 + 2 𝑘)𝑡2 +

1

24
(1 + 2 𝑘 + 7 𝑘2 + 2 𝑘3)𝑡3 +

1

192
(1 + 2 𝑘 + 7 𝑘2 +

25 𝑘3 + 14 𝑘4 + 7 𝑘5 + 2 𝑘6)𝑡4 + (
1

1920
) (1 + 2 𝑘 + 7 𝑘2 + 25 𝑘3 + 87 𝑘4 +

73 𝑘5 + 65 𝑘6 + 41 𝑘7 + 14 𝑘8 + 7 𝑘9 + 2 𝑘10)𝑡5 + ⋯        (13) 

 

Table 2. Comparison between exact and NAM for Example 4.2. 

𝒕 Exact NAM Absolute Error 

0.2 1.2214 1.2214 0.00 

0.4 1.49182 1.49182 0.00 

0.6 1.82212 1.82212 2.22045 × 10−16 

0.8 2.22554 2.22554 4.44089 × 10−16 

1.0 2.71828 2.71828 4.44089 × 10−16 
 

 

At 𝑘 =
1

2
  , Eq. (13) will be exactly the same as the exact solution of Example 4.2. The graphical 

representation of numerical simulations of the behavior of the exact and approximate solution (obtained 

by NAM) is shown in Figure 3. Absolute errors are plotted in Figure 4 in to understand the convergence 

of the method. In Figure 5, we plot the graphs of different values of 𝑘  with  𝐴 =
1

2
 and 𝐵 =

1

2
  It has 
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been observed that graphs behave approximately the same for all values of  𝑘 𝑡𝑖𝑙𝑙 𝑡 = 5 but graph slopes 

upward as 𝑘 increases for values of 𝑡 > 5. Table 2 illustrates the agreement between the obtained 

approximate solutions and the exact ones via evaluating the 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 = |𝜉𝑒𝑥𝑎𝑐𝑡(𝑡) −

𝜉𝑎𝑝𝑝𝑟𝑜𝑥(𝑡)|. 

 

Example 4.3. Consider the following Nonlinear Pantograph Delay Differential Equation of 

first order [37]: 

𝜉′(𝑡) = 𝐴𝜉(𝑘𝑡) − 𝜉(𝑡) + 𝐵𝑒−𝑘𝑡    (14) 

where 0 ≤ 𝑡 and 0 < 𝑘 < 1 with initial condition 𝜉(0) = 1. The exact solution of Eq. (14) is 

 

Figure 6. Graphical illustration of comparison of the exact solution and obtained 

numerical solution for Example 4.3. 

 

 

Figure 7. Absolute error graph of the obtained numerical results for Example 

4.3.by novel analytical method. 

 

𝜉(𝑡) = 𝑒−𝑡. We assumed that 𝐴 =
1

2
, 𝐵 = −

1

2
 and 𝑘 =

1

2
. Calculated the higher-order 

derivatives of Eq. (14) then, put 𝑡 = 0 in each derivatives term, and by using initial conditions, 

we obtained the following results: 

𝑎0 = 1 (15) 
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𝑎1 = −1 

𝑎2 = 1 

𝑎3 = −1 

⋮ 

Putting Eq. (15) into Eq. (6), we get 

𝜉(𝑡) = 1 − 𝑡 +
𝑡2

2!
−

𝑡3

3!
+

𝑡4

4!
+ ⋯ + (−1)𝑛

𝑡𝑛

𝑛!
+ ⋯ (16) 

 

Table 3. Comparison between the exact solution and solution by NAM for Example 4.3. 

𝒕 Exact NAM Absolute Error 

0.2 0.818731 0.818731 1.11022 × 10−16 

0.4 0.67032 0.67032 0. 

0.6 0.548812 0.548812 1.11022 × 10−16 

0.8 0.449329 0.449329 1.11022 × 10−16 

1.0 0.367879 0.367879 1.11022 × 10−16 
 

 

In figure 6, at  𝑘 =
1

2
 , the comparison of the exact and nnumerical solutions obtained by NAM 

describes the accuracy of the method. Absolute errors in Figure 7 show that the approximate 

solution is entirely in harmony with the exact solution of test Example 4.3. Table 3 shows the 

absolute errors that are obtained for some selected various values of t for Example 4.3 

 

Figure 8. Comparison of the exact solution and obtained numerical solution for Example 4.4. 

 

Example 4.4. Consider the following Nonlinear Pantograph Delay Differential Equation of 

third order [38]: 

𝜉′′′(𝑡) = −1 + 2𝜉2(𝑘𝑡) (17) 

where 0 ≤ 𝑡 and 0 < 𝑘 < 1 with initial conditions 𝜉(0) = 0, 𝜉′(0) = 1 and 𝜉′′(0) = 0. The 

exact solution of Eq. (17) is 𝜉(𝑡) = sin (𝑡) at 𝑘 =
1

2
. Calculated the higher-order derivatives of 
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Eq. (17) then, put 𝑡 = 0 in each derivatives term, and by using initial conditions, we obtained 

the following results: 

 

 

Figure 9. Absolute error graph of the obtained numerical results for Example 

4.4. by novel analytical method. 

 

 

𝑎0 = 0 

𝑎1 = 1 

𝑎2 = 0 

𝑎3 = −1 

𝑎4 = 0 

𝑎5 = 4𝑘2 

𝑎6 = 0 

𝑎7 = −16𝑘4 

⋮ 

(18) 

Putting Eq. (18) into Eq. (6), we get 

𝜉(𝑡) =  𝑡 −
𝑡3

6
+

𝑘2𝑡5

30
−

𝑘4𝑡7

315
+

𝑘6(5 + 12 𝑘2)𝑡9

45360
+ ⋯ (19) 

In figure 8, the exact and the approximate solution coincide with each other. Figure 9 evidence 

that NAM converges to an exact solution by showing the lowest values of Absolute errors. 

Graphical illustration of numerical solution of test Example 4.4 is given in Figure 10 for 

different values of k. Deviation can be observed for the values of 𝑡 > 6 in this plot for higher 

values of 𝑘. Table 4 demonstrates the agreement between the obtained approximate solutions 

by NAM and the exact by calculating the 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 = |𝜉𝑒𝑥𝑎𝑐𝑡(𝑡) − 𝜉𝑎𝑝𝑝𝑟𝑜𝑥(𝑡)|. 

 

Table 4. Comparison between exact and NAM for Example 4.4. 
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𝒕 Exact NAM Absolute Error 

0.2 0.198669 0.198669 2.77556 × 10−17 

0.4 0.389418 0.389418 5.55112 × 10−17 

0.6 0.564642 0.564642 0.00 

0.8 0.717356 0.717356 1.11022 × 10−16 

1.0 0.841471 0.841471 0.00 
 

 

 

 

Figure 10. Different values of k were obtained numerically by using NAM for 

Example 4.4. 

 

Example 4.5. Consider the following Multi-Pantograph Delay Differential Equation of the 

first order[38]: 

𝜉′(𝑡) = −
5

6
𝜉(𝑡) + 4 𝜉(𝑘1𝑡) + 9𝜉(𝑘2𝑡) + 𝑡2 − 1 

(20) 

 

Figure 11. Graph of the exact solution versus obtained numerical solution for 

Example 4.5. by using NAM. 

 

where 0 ≤ 𝑡 and 0 < 𝑘 < 1 with initial condition 𝜉(0) = 1. The exact solution of Eq. (20) is  

𝜉(𝑡) = 1 +
67

6
𝑡 +

1675

72
𝑡2 +

12157

1296
𝑡3. We assumed that 𝑘1 =

1

2
 and 𝑘2 =

1

3
. Calculated the 
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higher-order derivatives of Eq. (20) then, put 𝑡 = 0 in each derivatives term, and by using the 

initial condition, we obtained the following results: 

𝑎0 = 1 

𝑎1 =
67

6
 

𝑎2 = −
335

36
+

134𝑘1

3
+

201𝑘2

2
 

𝑎3 = 2 −
335

216
(−5 + 24𝑘1 + 54𝑘2) +

67

9
𝑘1

2(−5 + 24𝑘1 + 54𝑘2) +
67

4
𝑘2

2(−5 + 24𝑘1

+ 54𝑘2) 

𝑎4 = 0 

𝑎5 = 0 

⋮ 

(21) 

Putting Eq. (21) into Eq. (6), we get 

𝜉(𝑡) =
24715

7776
+

67𝑡

6
+

871𝑡2

72
+

1303𝑡3

1296
−

1303𝑡4

10368
+

871𝑘1

324
+

67𝑡2𝑘1

3
+

67𝑡3𝑘1

54

−
67𝑡4𝑘1

432
+

11323𝑘1
2

324
+

871

54
𝑡3𝑘1

2 −
871

432
𝑡4𝑘1

2 +
45773𝑘1

3

972
+

268

9
𝑡3𝑘1

3

−
3521𝑡4𝑘1

3

1296
−

10877𝑘1
4

324
+

67

54
𝑡4𝑘1

4 −
23852𝑘1

5

81
+

871

54
𝑡4𝑘1

5 −
19162𝑘1

6

27

+
268

9
𝑡4𝑘1

6 −
7042𝑘1

7

27
+

1072𝑘1
8

9
+

13936𝑘1
9

9
+

8576𝑘1
10

3
 

(22) 

which is the same as an exact solution. 

 

Figure 12. Different values of k, are obtained numerically by using NAM for 

Example 4.5. 

 

When we fix 𝑘2 =
1

3
 and 𝑘1 =

1

2
  in an approximate solution of Example 4.5, then it will be 

precise as the same as the exact solution, which can be seen in Figure 11. In Figure 12, we plot 
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the graph of different values of 𝑘1 by fixing 𝑘2 =
1

3
 , we may observe that as 𝑘 approaches  

zero then slopes downwards, but as 𝑘 increases, the graph slopes upward.  

 

Example 4.6. Consider the following Pantograph Delay Differential Equation of the Second 

order[38]: 

𝜉′′(𝑡) =
3

4
𝜉(𝑡) + 𝜉(𝑘𝑡) −

3
4

𝑡2 + 𝑡 + 1
−

4

𝑡2 + 2𝑡 + 4
+

2(2𝑡 + 1)2

(𝑡2 + 𝑡 + 1)3
−

2

(𝑡2 + 𝑡 + 1)2
 (23) 

where 0 ≤ 𝑡 and 0 < 𝑘 < 1 with initial conditions 𝜉(0) = 1 and 𝜉′(0) = −1. 

 

Figure 13. Numerical comparison of the exact solution and obtained numerical 

solution by using NAM for Example 4.6. 

 

The exact solution of Eq. (23) is 𝜉(𝑡) =
1

𝑡2+𝑡+1
 at 𝑘 =

1

2
 . We assumed that 𝑘 =

1

2
. Calculated 

the higher-order derivatives of Eq. (23) then, put 𝑡 = 0 in each derivatives term, and by using 

the initial conditions, we obtained the following results: 

𝑎0 = 1 

𝑎1 = −1 

𝑎2 = 0 

𝑎3 =
13

2
− 𝑘 

𝑎4 = −24 

𝑎5 =
1

8
(−3 − 6𝑘 + 52𝑘3 − 8𝑘4) 

⋮ 

(24) 

Putting Eq. (24) into Eq. (6), we get 
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𝜉(𝑡) = 𝜉(𝑡) = 1 − 𝑡 −
1

12
(−13 + 2 𝑘)𝑡3 − 𝑡4

−
1

960
(3 + 6 𝑘 − 52 𝑘3 + 8 𝑘4)𝑡5 −

1

480
(−481 + 16 𝑘4)𝑡6

+ ⋯ 

(25) 

 

 

Figure 14. Absolute Error graph of the obtained numerical results by using 

NAM for Example 4.6. 

 

Table 5. Comparison between exact and NAM for Example 4.6. 

𝒕 Exact NAM Absolute Error 

0.2 0.806452 0.806452 1.11022 × 10−16 

0.4 0.641026 0.641026 0.00 

0.6 0.510204 0.510204 1.11022 × 10−16 

0.8 0.409836 0.409836 1.11022 × 10−16 
 

 

which is the same as the exact solution. Figure 13 shows that the new analytical method gives 

accurate results when applied on test problem 4.6 with 𝑘 =
1

2
 as both graphs of the exact 

solution and numerical solution coincide with each other. Absolute errors in figure 14 show 

the accuracy of the method. Table 5 demonstrates the harmony between the obtained 

approximate solutions by NAM and the exact ones by computing the 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟𝑠 =

|𝜉𝑒𝑥𝑎𝑐𝑡(𝑡) − 𝜉𝑎𝑝𝑝𝑟𝑜𝑥(𝑡)|. 

 
5. Conclusions 

In this paper, we introduced a novel analytical approach to pantograph delay differential 

equations. The practicality and convergence of estimated solutions found were explored. Some 

pantograph delay differential equations have been successfully solved Novel Analytical 
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Method (NAM). When the resulting findings were compared to exact solutions, we discovered 

that our method is more exact than certain current methodologies. The suggested approach 

more directly computes the Taylor series’ coefficients. Other methods may require additional 

calculations and complications to give a more precise result. Thus, in a few terms, the 

suggested technique outperforms the other methods in terms of accuracy. The resultant 

solutions are more physically realistic since it solves non-linear problems without 

discretization, linearization, or perturbation. In the future, we want to apply the approach to 

the numerical solution of additional forms of delay differential equations, such as fractional 

partial delay differential equations and fractional delay integral differential equations 
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