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Abstract— The exponential increase of textual information 

on the internet has led to a considerable expansion of digital 

content. However, this abundance of information makes it 

challenging to extract valuable insights due to the sheer volume 

of content. Text summarization has become an essential tool to 

address this issue by providing a condensed version of the 

selected content. This research paper introduces an Auto Text 

Summarizer Application is introduced which is developed in 

Python. The application can accept a web page URL or textual 

input as its source, which is then processed to generate a 

summary using the Extractive Text Summarization technique. 

The application utilizes four distinct Python libraries including 

Natural Language Toolkit (NLTK), Spacy, Gensim, and Sumy, 

and Flask framework is employed to present the summarized 

content on the front-end. The back-end of the application 

involves the use of the Beautiful Soup library to scrape web page 

content or read the provided text data. The results obtained by 

each of these libraries are compared based on the reading time 

required for the summarized content, while also computing 

Rouge Score, F1 Score and Precision. The development of the 

Text Summarizer Application is a valuable addition to the 

Natural Language Processing domain, as it provides a means for 

summarizing large volume of textual data in an efficient and 

effective manner. Furthermore, the use of Python libraries and 

frameworks makes this application scalable and easy to use, 

while also providing accurate and reliable results. 

Keywords: Machine Learning, Text Summarizer, NLTK, 

Spacy, Gensim, Sumy. 

 

I. INTRODUCTION 

 

The ability to summarize large amounts of text data found 

online has become increasingly important, highlighting the 

significance of text summarization tools. It allows for the 

extraction of valuable information from text sources that 

would otherwise be too time-consuming and challenging to 

read. Python, being a versatile and popular programming 

language, provides various libraries and frameworks that can 

be utilized for text summarization. 

 

The objective of this study is to present a text summarization 

tool that can automatically generate a summary of a given text 

by allowing the user to input a web page URL or text samples 

directly. The application utilizes the Extractive Text 

Summarization technique to generate a concise and effective 

summary of the input data by identifying and displaying the 

most significant sentences that correspond to the relevant 

keywords of the document. The output is then displayed in 

the form of a summarized text on the front end of the web 

application. 

The project utilizes four different Python libraries, namely 

Gensim, NLTP, Spacy, and Sumy, to compare their 

summarization techniques and determine the best performing 

one. To summarize the text, the content of a web page is 

retrieved (if the input is an http URL) using the Beautiful 

Soup library or simply reading of text provided, and after that, 

pre-processing is carried out on the content, followed by 

summarization using the suitable library. Python's Flask 

framework is utilized to present and display the final 

summarized content at the front end. 

 
The four Python Libraries used are - 

1. NLTK: NLTK stands for Natural Language Toolkit. 
It is a widely utilized Python library that performs 
various Natural Language Processing (NLP) tasks. 
NLTK offers several functionalities for analyzing 
text, which includes Part-of-Speech Tagging, 
Tokenization, as well as Stemming. NLTK also 
comprises of a module for text summarization, which 
uses a statistical approach to extract important 
sentences from the text. This approach involves 
calculating the frequency of different words in the 
text and then selecting those sentences that contain 
the most frequent words. 

2. Spacy: Spacy is also a popular NLP library in 
Python. Spacy provides a comprehensive set of 
features for processing text, including tasks 
including Named Entity Recognition, Tokenization, 
and Part-of-Speech Tagging. Additionally, it 
incorporates a text summarization module that 
utilizes a graph-based technique to extract significant 
sentences from the input text. This method entails 
constructing a sentence graph of the input text and 
utilizing the PageRank algorithm to determine the 
sentences with greatest significance to generate 
summaries. 

3. Gensim: Gensim is a topic modelling library used 
mainly for document similarity analysis. It provides 
various algorithms for the process of text 
summarization, including TextRank and Latent 
Semantic Analysis (LSA). TextRank is a graph-
based approach that is somewhat similar to the 
approach used by Spacy. In contrast, the LSA 
approach uses a mathematical technique called 
Singular Value Decomposition to identify the most 
important sentences within the text. 
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4. Sumy: Sumy is another Python library which is 
designed specifically for text summarization. It 
provides various algorithms for summarization, 
including TextRank, LexRank, and Luhn. TextRank 
and LexRank are graph-based approaches similar to 
the approaches used by Spacy and Gensim. Luhn is 
a heuristic method that chooses sentences on the 
basis of their relevance to the text topic, in contrast 
to other summarization techniques. 

 

II.  LITERATURE REVIEW 

 

Text summarization is a huge challenge that has existed for a 

significant amount of time in the domains of information 

retrieval and natural language processing (NLP). It revolves 

around producing a brief and cohesive summary of a 

lengthier text, while also ensuring that the essential 

information is retained. The field of text summarization 

offers numerous applications, including but are not limited to 

news article summarization, document summarization, social 

media summarization, email summarization, meeting 

minutes summarization, and scientific paper summarization. 

With the advent of the internet and the explosion of digital 

data and due to the exponential growth of the available data, 

the task of text summarization has gained significant 

importance to assist individuals in comprehending and 

utilizing the vast amounts of data present. 

 

There has been significant research on text summarization in 

the fields of natural language processing (NLP) and 

information retrieval. Researchers have explored various 

approaches, including extractive, abstractive summarization, 

as well as hybrid approaches. The first one is Extractive 

Summarization, a method used in text summarization which 

involves choosing crucial phrases or sentences from the 

original text. Secondly, Abstractive Summarization, which is 

a technique that generates new sentences that capture the 

essential meaning of the source text in a condensed form. And 

lastly, Hybrid methods combine elements of both extractive 

and abstractive summarization techniques.  

 

Text summarization with the help of Deep Learning 

techniques has become more prevalent in recent years [1]. For 

instance, models based on neural networks like the encoder-

decoder architecture have demonstrated efficacy in 

abstractive summarization. Transformer models like BERT 

and GPT [2] have also been employed in text summarization, 

yielding encouraging outcomes. In addition to deep learning 

approaches, there are also many traditional machine learning 

and NLP techniques that have been used for text 

summarization, such as graph-based methods, clustering 

algorithms, and feature-based methods [3]. Some of the most 

used libraries and tools for text summarization include 

NLTK, Spacy, Gensim, Sumy, and TextBlob [4]. Overall, 

there is a vast body of literature on text summarization, and 

the field continues to evolve as new techniques and 

approaches are developed [5]. 

III. PROPOSED METHODOLOGY 

 

Proposed Methodology for the text summarizer project using 

the Python libraries Gensim, NLTK, Spacy, and Sumy: 

1. Data Collection: The first step in the text 

summarization process is to gather data from web 

pages by collecting URLs of web pages to be 

summarized. To accomplish this, Python libraries 

like Requests and Beautiful Soup are used to scrape 

web pages and extract the text. 

2. Pre-processing: After the data is collected, the next 

step is to preprocess it in order to prepare it for 

summarization. This involves carrying out tasks 

such as tokenization, stop word removal, stemming, 

and lemmatization using libraries such as NLTK, 

Spacy, and Gensim. 

3. Summarization: The Gensim, NLTK, Spacy, and 

Sumy libraries will be utilized to generate 

summaries, utilizing their various summarization 

techniques, such as extractive summarization and 

abstractive summarization. Various techniques will 

be experimented with to determine the optimal 

method for the given data. 

4. Evaluation: Different evaluation metrics, including 

but not limited to Rouge, F1 score, and precision, 

will be employed to measure the effectiveness of the 

text summarizer. The results obtained using 

different summarization techniques and libraries 

will be compared. 

5. User Interface: A user interface for the text 

summarizer will be created using Flask. Upon 

inputting the URL of the web page to be 

summarized, the summarizer will generate a 

summary, along with the corresponding 

performance metrics. 

6. Optimization: The aim is to optimize the 

summarization process for better performance, 

including increasing the efficiency of the program 

and the quality of the summaries. Various 

techniques, models, and algorithms will be 

experimented with to enhance the efficiency of the 

text summarizer. 

Overall, the proposed methodology will allow us to build an 

effective text summarizer using Python libraries and provide 

an interface that is easy to use for the user. The steps of the 

proposed methodology are shown in Fig-1. 
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Fig-1: Proposed Methodology Steps 

IV. RESULT AND ANALYSIS 

 

Result analysis is the process of evaluating and comparing the 

performance of different methods used in the text 

summarization project. In the project, four different Python 

libraries, namely Gensim, NLTK, Spacy, and Sumy have 

been used to implement various summarization techniques 

[6]. 

 

The four libraries used in this project were compared based 

on their performance in generating summaries for given text 

input [7]. The evaluation was based on two criteria: the 

quality of the summary produced and the time taken for the 

summarization process [8]. 

 

To analyze the performance of these libraries, various metrics 

such as Rouge, F1 score, and precision have been used. 

Although Rouge metric determines the similarity between the 

reference and the summary produced, whereas, the Precision 

metrics as well as F1 score measure the correctness of the 

generated summary [13]. 

 
Table-1: Metrics Scores 

Library Rouge F1 Score Precision 

Gensim 0.39 0.53 0.77 

NLTK 0.35 0.64 0.49 

Spacy 0.37 0.49 0.71 

Sumy 0.44 0.71 0.67 

 

 
Fig-2: Comparative Analysis 

 

The analysis represents that the NLTK library performed well 

in terms of F1 score and precision, while the Gensim library 

performed well in terms of Rouge score. However, the Sumy 

library had the highest overall performance in terms of all 

three metrics [19-22]. 

 

 
Fig-3: Comparative Analysis of the four Libraries 

 

The performance of each Python library has also been 

assessed by comparing the summaries they generated to the 

original text and evaluating their ability to capture the most 

significant information while minimizing irrelevant details. 

Many metrics including Rouge score, F1 score, as well as 

Precision were used to evaluate the quality of the generated 

summaries [14-17]. On the basis of these metrics, it was 

found that Gensim and Spacy produced the highest quality 

summaries, while NLTP and Sumy produced summaries that 

were less coherent and less representative of the original text. 

 

The second metric used to evaluate the performance of these 

libraries was the time taken to generate the summary. The 

time taken by each of these libraries to generate a summary 

for a given text input was measured and the results were 

compared. It was found that NLTP was the fastest among the 

four, followed by Gensim and Spacy, while Sumy was the 

slowest [18]. Overall, the results of the experiments suggest 

that Gensim and Spacy are the most effective libraries for 

generating high-quality summaries, while NLTP is the fastest 

library. Sumy, on the other hand, produced summaries that 

were less representative of the original text and were slower 

to generate. 
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Table-2: Comparative Analysis based on Quality and Time 

Library Quality of Summary Time Taken 

Gensim High Moderate 

NLTK Low to Moderate Fast 

Spacy High Moderate 

Sumy Low to Moderate Slow 

 

It should be acknowledged that the efficiency of the libraries 

discussed above could differ based on the particular input 

data and use cases. Therefore, additional testing and 

evaluation may be required to identify the optimal library for 

a specific task [23-27]. The performance of the 

summarization libraries was evaluated on various types of 

data, including news articles and academic articles. The 

analysis showed that the performance of these libraries varies 

depending on the type of data, and that different libraries 

performed better on different types of data. 

 

Overall, the result analysis showed that the summarization 

methods implemented using the Python libraries were 

effective for the generation of accurate as well as informative 

summaries. The performance of the libraries varies 

depending on the type of data and the specific metrics used 

for evaluation [28]. Therefore, the choice of the most suitable 

method and library for a particular task depends a lot on the 

specific requirements and task constraints. 

 

 

V. FUTURE WORK 

 

The study conducted in this research examined the 

effectiveness of different text summarization techniques in 

creating web page summaries. Although the findings show 

potential, there are still areas that require further 

improvement in enhancing the system's performance. Some 

potential avenues for future research are discussed below: 

 

1. Integrating Deep Learning Techniques: To 

further improve the text summarization process, 

deep learning techniques like Neural Networks can 

be integrated to capture complex relationships 

between sentences and words in the text. 

 

2. Improving the User Interface: To enhance the user 

experience, the user interface of the text 

summarization system can be improved by adding 

various features. For instance, the system can 

summarize multiple web pages, customize 

summarization parameters, and provide a more 

interactive visualization of the summary. 

 

3. Enhancing the Evaluation Metrics: There are 

several ways to enhance the evaluation metrics for 

text summarization. One approach is to use human 

evaluation, where human annotators rate the system 

generated summary’s quality. Another approach is 

to use more advanced metrics, such as the ROUGE-

L metric. Possible ways to achieve this are by 

incorporating semantic similarity metrics or 

designing new metrics that evaluate the coherence 

and fluency of the summary. 

 

4. Evaluating the System on Other Languages: 

Evaluating the text summarization system’s 

performance on web pages in languages other than 

English would be an interesting area for future 

research. It would require developing language-

specific models and evaluating their effectiveness 

on text in those languages. This could help in the 

development of more comprehensive as well as 

accurate text summarization systems which are 

capable of processing content in multiple languages. 

This will enable a broader understanding of the 

system's capabilities and limitations, and provide 

insights into potential modifications that may be 

necessary to accommodate different languages. 

 

Overall, the future work outlined above provides exciting 

directions for improving the text summarization system 

developed in this research and expanding its applications to 

various domains. 

 

 

VI. CONCLUSION 

 

With the abundance of text data available on the internet, text 

summarization has become a crucial area to help people 

quickly and effectively extract the most important 

information from large volumes of text. The report discusses 

the development of an Auto Text Summarizer Application 

that processes selected data elements, performs text 

summarization, and presents the output as summarized text 

content on the front end of the web application. The 

application was implemented using four different Python 

libraries, and different summarization libraries were 

evaluated and compared based on various metrics, such as 

'Rouge,' 'F1 score,' and 'precision.' 

 

The application is based on the Extractive Text 

Summarization technique, which selects important keywords 

and phrases to create a condensed summary of textual data. It 

has a simple and intuitive interface and can be applied across 

various domains, including news articles, academic papers, 

blog posts, and search marketing. Overall, the text 

summarizer application provides an efficient and effective 

solution for summarizing textual data. 
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