
Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 04 APRIL 2023 1038-1043

A Comparative Study of Text Summarization using

Gensim, NLTK, Spacy, and Sumy Libraries

Abhilasha Sharma

Software Engineering

Delhi Technological University

Delhi, India

Raghav Aggarwal

Software Engineering

Delhi Technological University

Delhi, India

Raghav Alawadhi

Software Engineering

Delhi Technological University

Delhi, India

Abstract— The exponential increase of textual information

on the internet has led to a considerable expansion of digital

content. However, this abundance of information makes it

challenging to extract valuable insights due to the sheer volume

of content. Text summarization has become an essential tool to

address this issue by providing a condensed version of the

selected content. This research paper introduces an Auto Text

Summarizer Application is introduced which is developed in

Python. The application can accept a web page URL or textual

input as its source, which is then processed to generate a

summary using the Extractive Text Summarization technique.

The application utilizes four distinct Python libraries including

Natural Language Toolkit (NLTK), Spacy, Gensim, and Sumy,

and Flask framework is employed to present the summarized

content on the front-end. The back-end of the application

involves the use of the Beautiful Soup library to scrape web page

content or read the provided text data. The results obtained by

each of these libraries are compared based on the reading time

required for the summarized content, while also computing

Rouge Score, F1 Score and Precision. The development of the

Text Summarizer Application is a valuable addition to the

Natural Language Processing domain, as it provides a means for

summarizing large volume of textual data in an efficient and

effective manner. Furthermore, the use of Python libraries and

frameworks makes this application scalable and easy to use,

while also providing accurate and reliable results.

Keywords: Machine Learning, Text Summarizer, NLTK,

Spacy, Gensim, Sumy.

I. INTRODUCTION

The ability to summarize large amounts of text data found

online has become increasingly important, highlighting the

significance of text summarization tools. It allows for the

extraction of valuable information from text sources that

would otherwise be too time-consuming and challenging to

read. Python, being a versatile and popular programming

language, provides various libraries and frameworks that can

be utilized for text summarization.

The objective of this study is to present a text summarization

tool that can automatically generate a summary of a given text

by allowing the user to input a web page URL or text samples

directly. The application utilizes the Extractive Text

Summarization technique to generate a concise and effective

summary of the input data by identifying and displaying the

most significant sentences that correspond to the relevant

keywords of the document. The output is then displayed in

the form of a summarized text on the front end of the web

application.

The project utilizes four different Python libraries, namely

Gensim, NLTP, Spacy, and Sumy, to compare their

summarization techniques and determine the best performing

one. To summarize the text, the content of a web page is

retrieved (if the input is an http URL) using the Beautiful

Soup library or simply reading of text provided, and after that,

pre-processing is carried out on the content, followed by

summarization using the suitable library. Python's Flask

framework is utilized to present and display the final

summarized content at the front end.

The four Python Libraries used are -

1. NLTK: NLTK stands for Natural Language Toolkit.
It is a widely utilized Python library that performs
various Natural Language Processing (NLP) tasks.
NLTK offers several functionalities for analyzing
text, which includes Part-of-Speech Tagging,
Tokenization, as well as Stemming. NLTK also
comprises of a module for text summarization, which
uses a statistical approach to extract important
sentences from the text. This approach involves
calculating the frequency of different words in the
text and then selecting those sentences that contain
the most frequent words.

2. Spacy: Spacy is also a popular NLP library in
Python. Spacy provides a comprehensive set of
features for processing text, including tasks
including Named Entity Recognition, Tokenization,
and Part-of-Speech Tagging. Additionally, it
incorporates a text summarization module that
utilizes a graph-based technique to extract significant
sentences from the input text. This method entails
constructing a sentence graph of the input text and
utilizing the PageRank algorithm to determine the
sentences with greatest significance to generate
summaries.

3. Gensim: Gensim is a topic modelling library used
mainly for document similarity analysis. It provides
various algorithms for the process of text
summarization, including TextRank and Latent
Semantic Analysis (LSA). TextRank is a graph-
based approach that is somewhat similar to the
approach used by Spacy. In contrast, the LSA
approach uses a mathematical technique called
Singular Value Decomposition to identify the most
important sentences within the text.

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 04 APRIL 2023 1038-1043

4. Sumy: Sumy is another Python library which is
designed specifically for text summarization. It
provides various algorithms for summarization,
including TextRank, LexRank, and Luhn. TextRank
and LexRank are graph-based approaches similar to
the approaches used by Spacy and Gensim. Luhn is
a heuristic method that chooses sentences on the
basis of their relevance to the text topic, in contrast
to other summarization techniques.

II. LITERATURE REVIEW

Text summarization is a huge challenge that has existed for a

significant amount of time in the domains of information

retrieval and natural language processing (NLP). It revolves

around producing a brief and cohesive summary of a

lengthier text, while also ensuring that the essential

information is retained. The field of text summarization

offers numerous applications, including but are not limited to

news article summarization, document summarization, social

media summarization, email summarization, meeting

minutes summarization, and scientific paper summarization.

With the advent of the internet and the explosion of digital

data and due to the exponential growth of the available data,

the task of text summarization has gained significant

importance to assist individuals in comprehending and

utilizing the vast amounts of data present.

There has been significant research on text summarization in

the fields of natural language processing (NLP) and

information retrieval. Researchers have explored various

approaches, including extractive, abstractive summarization,

as well as hybrid approaches. The first one is Extractive

Summarization, a method used in text summarization which

involves choosing crucial phrases or sentences from the

original text. Secondly, Abstractive Summarization, which is

a technique that generates new sentences that capture the

essential meaning of the source text in a condensed form. And

lastly, Hybrid methods combine elements of both extractive

and abstractive summarization techniques.

Text summarization with the help of Deep Learning

techniques has become more prevalent in recent years [1]. For

instance, models based on neural networks like the encoder-

decoder architecture have demonstrated efficacy in

abstractive summarization. Transformer models like BERT

and GPT [2] have also been employed in text summarization,

yielding encouraging outcomes. In addition to deep learning

approaches, there are also many traditional machine learning

and NLP techniques that have been used for text

summarization, such as graph-based methods, clustering

algorithms, and feature-based methods [3]. Some of the most

used libraries and tools for text summarization include

NLTK, Spacy, Gensim, Sumy, and TextBlob [4]. Overall,

there is a vast body of literature on text summarization, and

the field continues to evolve as new techniques and

approaches are developed [5].

III. PROPOSED METHODOLOGY

Proposed Methodology for the text summarizer project using

the Python libraries Gensim, NLTK, Spacy, and Sumy:

1. Data Collection: The first step in the text

summarization process is to gather data from web

pages by collecting URLs of web pages to be

summarized. To accomplish this, Python libraries

like Requests and Beautiful Soup are used to scrape

web pages and extract the text.

2. Pre-processing: After the data is collected, the next

step is to preprocess it in order to prepare it for

summarization. This involves carrying out tasks

such as tokenization, stop word removal, stemming,

and lemmatization using libraries such as NLTK,

Spacy, and Gensim.

3. Summarization: The Gensim, NLTK, Spacy, and

Sumy libraries will be utilized to generate

summaries, utilizing their various summarization

techniques, such as extractive summarization and

abstractive summarization. Various techniques will

be experimented with to determine the optimal

method for the given data.

4. Evaluation: Different evaluation metrics, including

but not limited to Rouge, F1 score, and precision,

will be employed to measure the effectiveness of the

text summarizer. The results obtained using

different summarization techniques and libraries

will be compared.

5. User Interface: A user interface for the text

summarizer will be created using Flask. Upon

inputting the URL of the web page to be

summarized, the summarizer will generate a

summary, along with the corresponding

performance metrics.

6. Optimization: The aim is to optimize the

summarization process for better performance,

including increasing the efficiency of the program

and the quality of the summaries. Various

techniques, models, and algorithms will be

experimented with to enhance the efficiency of the

text summarizer.

Overall, the proposed methodology will allow us to build an

effective text summarizer using Python libraries and provide

an interface that is easy to use for the user. The steps of the

proposed methodology are shown in Fig-1.

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 04 APRIL 2023 1038-1043

Fig-1: Proposed Methodology Steps

IV. RESULT AND ANALYSIS

Result analysis is the process of evaluating and comparing the

performance of different methods used in the text

summarization project. In the project, four different Python

libraries, namely Gensim, NLTK, Spacy, and Sumy have

been used to implement various summarization techniques

[6].

The four libraries used in this project were compared based

on their performance in generating summaries for given text

input [7]. The evaluation was based on two criteria: the

quality of the summary produced and the time taken for the

summarization process [8].

To analyze the performance of these libraries, various metrics

such as Rouge, F1 score, and precision have been used.

Although Rouge metric determines the similarity between the

reference and the summary produced, whereas, the Precision

metrics as well as F1 score measure the correctness of the

generated summary [13].

Table-1: Metrics Scores

Library Rouge F1 Score Precision

Gensim 0.39 0.53 0.77

NLTK 0.35 0.64 0.49

Spacy 0.37 0.49 0.71

Sumy 0.44 0.71 0.67

Fig-2: Comparative Analysis

The analysis represents that the NLTK library performed well

in terms of F1 score and precision, while the Gensim library

performed well in terms of Rouge score. However, the Sumy

library had the highest overall performance in terms of all

three metrics [19-22].

Fig-3: Comparative Analysis of the four Libraries

The performance of each Python library has also been

assessed by comparing the summaries they generated to the

original text and evaluating their ability to capture the most

significant information while minimizing irrelevant details.

Many metrics including Rouge score, F1 score, as well as

Precision were used to evaluate the quality of the generated

summaries [14-17]. On the basis of these metrics, it was

found that Gensim and Spacy produced the highest quality

summaries, while NLTP and Sumy produced summaries that

were less coherent and less representative of the original text.

The second metric used to evaluate the performance of these

libraries was the time taken to generate the summary. The

time taken by each of these libraries to generate a summary

for a given text input was measured and the results were

compared. It was found that NLTP was the fastest among the

four, followed by Gensim and Spacy, while Sumy was the

slowest [18]. Overall, the results of the experiments suggest

that Gensim and Spacy are the most effective libraries for

generating high-quality summaries, while NLTP is the fastest

library. Sumy, on the other hand, produced summaries that

were less representative of the original text and were slower

to generate.

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 04 APRIL 2023 1038-1043

Table-2: Comparative Analysis based on Quality and Time

Library Quality of Summary Time Taken

Gensim High Moderate

NLTK Low to Moderate Fast

Spacy High Moderate

Sumy Low to Moderate Slow

It should be acknowledged that the efficiency of the libraries

discussed above could differ based on the particular input

data and use cases. Therefore, additional testing and

evaluation may be required to identify the optimal library for

a specific task [23-27]. The performance of the

summarization libraries was evaluated on various types of

data, including news articles and academic articles. The

analysis showed that the performance of these libraries varies

depending on the type of data, and that different libraries

performed better on different types of data.

Overall, the result analysis showed that the summarization

methods implemented using the Python libraries were

effective for the generation of accurate as well as informative

summaries. The performance of the libraries varies

depending on the type of data and the specific metrics used

for evaluation [28]. Therefore, the choice of the most suitable

method and library for a particular task depends a lot on the

specific requirements and task constraints.

V. FUTURE WORK

The study conducted in this research examined the

effectiveness of different text summarization techniques in

creating web page summaries. Although the findings show

potential, there are still areas that require further

improvement in enhancing the system's performance. Some

potential avenues for future research are discussed below:

1. Integrating Deep Learning Techniques: To

further improve the text summarization process,

deep learning techniques like Neural Networks can

be integrated to capture complex relationships

between sentences and words in the text.

2. Improving the User Interface: To enhance the user

experience, the user interface of the text

summarization system can be improved by adding

various features. For instance, the system can

summarize multiple web pages, customize

summarization parameters, and provide a more

interactive visualization of the summary.

3. Enhancing the Evaluation Metrics: There are

several ways to enhance the evaluation metrics for

text summarization. One approach is to use human

evaluation, where human annotators rate the system

generated summary’s quality. Another approach is

to use more advanced metrics, such as the ROUGE-

L metric. Possible ways to achieve this are by

incorporating semantic similarity metrics or

designing new metrics that evaluate the coherence

and fluency of the summary.

4. Evaluating the System on Other Languages:

Evaluating the text summarization system’s

performance on web pages in languages other than

English would be an interesting area for future

research. It would require developing language-

specific models and evaluating their effectiveness

on text in those languages. This could help in the

development of more comprehensive as well as

accurate text summarization systems which are

capable of processing content in multiple languages.

This will enable a broader understanding of the

system's capabilities and limitations, and provide

insights into potential modifications that may be

necessary to accommodate different languages.

Overall, the future work outlined above provides exciting

directions for improving the text summarization system

developed in this research and expanding its applications to

various domains.

VI. CONCLUSION

With the abundance of text data available on the internet, text

summarization has become a crucial area to help people

quickly and effectively extract the most important

information from large volumes of text. The report discusses

the development of an Auto Text Summarizer Application

that processes selected data elements, performs text

summarization, and presents the output as summarized text

content on the front end of the web application. The

application was implemented using four different Python

libraries, and different summarization libraries were

evaluated and compared based on various metrics, such as

'Rouge,' 'F1 score,' and 'precision.'

The application is based on the Extractive Text

Summarization technique, which selects important keywords

and phrases to create a condensed summary of textual data. It

has a simple and intuitive interface and can be applied across

various domains, including news articles, academic papers,

blog posts, and search marketing. Overall, the text

summarizer application provides an efficient and effective

solution for summarizing textual data.

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 04 APRIL 2023 1038-1043

REFERENCES

[1] H. P. Luhn, “The automatic creation of literature

abstracts,” IBM Journal of Research and

Development, vol. 2, no. 2, pp. 159–165, 1958.

[2] D. R. Radev, “SUMMONS: Stanford University

multi-document summarization system,” in

Proceedings of the 2000 ANLP-NAACL Workshop

on Summarization, 2000, pp. 21–30.

[3] E. Filatova and V. Hatzivassiloglou, “A formal

model for information selection in multi-sentence

text extraction,” in Proceedings of the 40th Annual

Meeting of the Association for Computational

Linguistics, 2002, pp. 111–118.

[4] P. Goyal, S. Chavan, and K. H. Kothari, “A

comparative study of text summarization

techniques,” International Journal of Advanced

Research in Computer Science and Software

Engineering, vol. 3, no. 2, pp. 53–58, 2013.

[5] A. Nenkova and K. McKeown, “Automatic

summarization,” Foundations and Trends® in

Information Retrieval, vol. 2, no. 2-3, pp. 113–195,

2008.

[6] D. Cer, D. Jurafsky, and C. Manning, “The best of

both worlds: combining recent advances in neural

machine translation,” in Proceedings of the 55th

Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long

Papers), 2017, pp. 76–85.

[7] S. Banerjee and A. Lavie, “METEOR: An automatic

metric for MT evaluation with high levels of

correlation with human judgments,” in Proceedings

of the ACL Workshop on Intrinsic and Extrinsic

Evaluation Measures for Machine Translation

and/or Summarization, 2005, pp. 65–72.

[8] J. H. Martin, C. D. Potts, and D. Jurafsky, “Scoring

sentence extraction for summarization: the

importance of syntactic parsing and inference,” in

Proceedings of the Workshop on Text

Summarization Branches Out (WAS 2004), 2004,

pp. 43–50.

[9] H. Poonawala, “Text summarization: a survey,”

Journal of Computer Science, vol. 7, no. 10, pp.

1520–1527, 2011.

[10] P. W. Foltz, K. K. Laham, and T. K. Landauer,

“Automated essay scoring: applications to

educational technology,” in Automated Essay

Scoring: A Cross-disciplinary Perspective, 2003,

pp. 129–159.

[11] M. Verspoor, K. E. Crouch, and T. Baldwin, “A

preliminary evaluation of text mining to improve

evidence-based diagnosis,” Studies in Health

Technology and Informatics, vol. 107, pp. 1214–

1218, 2004.

[12] M. A. Al-Muhaideb and W. F. Al-Khowaiter, "Text

summarization techniques: a brief survey," Journal

of King Saud University - Computer and

Information Sciences, vol. 23, no. 1, pp. 29-37,

2011.

[13] P. Erjavec, "Text Summarization: A Brief Survey of

Techniques," Artificial Intelligence and

Applications, vol. 2, no. 1, pp. 45-50, 2011.

[14] S. Das, S. Bandyopadhyay, and A. Gelbukh,

"Recent approaches to extractive document

summarization: A review," Intelligent Data

Analysis, vol. 21, no. 1, pp. 35-63, 2017.

[15] D. D. D. Costa, T. de Lima Bandeira, and A. O. de

Salles, "An overview of automatic text

summarization," Procedia Computer Science, vol.

55, pp. 1203-1212, 2015.

[16] M. Hasan and V. Ng, "Automatic keyphrase

extraction: A survey of the state of the art,"

Proceedings of the Association for Computational

Linguistics, vol. 52, pp. 126-139, 2014.

[17] A. Garg and J. Kaur, "A systematic literature review

of text summarization," Information Processing &

Management, vol. 56, no. 3, pp. 102082, 2019.

[18] R. Barzilay and M. Lapata, “Modeling Local

Coherence: An Entity-Based Approach,” in

Proceedings of the 43rd Annual Meeting of the

Association for Computational Linguistics (ACL),

2005, pp. 141-148.

[19] D. Dang and H. Croft, “A Query-Focused Multi-

Document Summarization,” in Proceedings of the

22nd International Conference on Computational

Linguistics (COLING), 2008, pp. 193-200.

[20] S. M. Kim, O. Medelyan, and M. W. K. Lawless,

“SemEval-2014 Task 3: Multilingual Semantic

Textual Similarity,” in Proceedings of the 8th

International Workshop on Semantic Evaluation

(SemEval), 2014, pp. 81-91.

[21] K. Kripalani and N. Majumder, “Improving Text

Summarization by Learning Sentence Weight

through Distribution of Words,” in Proceedings of

the 11th International Conference on Natural

Language Processing (ICON), 2014, pp. 1-6.

[22] S. Narayan, S. Bhatia, and S. Srinivasan,

“Document Summarization Using Submodular

Functions,” in Proceedings of the 49th Annual

Meeting of the Association for Computational

Linguistics (ACL), 2011, pp. 612-621.

[23] Y. Nenkova, “Automatic text summarization,”

Foundations and Trends in Information Retrieval,

vol. 5, no. 2-3, pp. 103-233, 2011.

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 19 ISSUE 04 APRIL 2023 1038-1043

[24] M. Nishikawa, K. Saito, and M. Inaba,

“Summarization of Scientific Papers Based on

Citation Contexts,” in Proceedings of the 15th

International Conference on Knowledge-Based

Intelligent Information and Engineering Systems

(KES), 2011, pp. 268-277.

[25] T. R. Pudota and P. Bhattacharya, “Query-Based

Multi-Document Summarization Using Markov

Random Fields,” in Proceedings of the 10th

International Conference on Natural Language

Processing (ICON), 2013, pp. 1-10.

[26] L. Turchi, F. Zanzotto, and E. Cabrio, “Joint

Segmentation and Labeling of Multi-Party Dialogue

for Text Summarization,” in Proceedings of the 14th

Conference of the European Chapter of the

Association for Computational Linguistics (EACL),

2014, pp. 78-83.

[27] M. Wan, J. Yang, and J. Xiao, “Adaptive Local

Modeling for Extractive Document

Summarization,” in Proceedings of the 23rd

International Conference on Computational

Linguistics (COLING), 2010, pp. 1212-1220.

[28] X. Wan, J. Yang, and J. Xiao, “Single Document

Summarization with Supervised Learning,” in

Proceedings of the 15th ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining (KDD), 2009, pp. 929-938.

