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Abstract-Among different lethal viruses, in recent times 

the covid-19 was a worldwide pandemic, that the 

human race of the modern era of 21st century faced 

and it shut down the whole world for an instance. It 

not only effects the human race but it effects all the 

aspects for human life economic and social. 

 About 577M of cases and more than 6.4M deaths had 

been registered during the pandemic up until now. In 

Pakistan, up until now there are 1.55M cases and 

more than 30487 deaths had been recorded. This is 

crucial to apprehend the shape and flows of a disease 

whilst it input in a community. Moreover, to get rid of 

maximum loss we ought to recognize the predicted 

numbers of infectious patients, deaths, and the risk 

factors related to it. To estimate the predicted number 

of deaths from coronavirus, we use the Inverse Pareto 

distribution below Bayesian paradigm. The posterior 

distributions are derived assuming the non-

informative priors (Uniform and Jeffery). The 

Bayesian estimation is done with each symmetrical 

and asymmetrical loss functions i.e. (Squared error, 

Quadratic error, Precautionary error, and weighted 

error). 

Keywords: Inverse Pareto distribution, Uniform and 

Jeffery priors, loss functions, real data analysis. 

Objectives: 

• The fundamental motive of this study is to 

check the overall performance of every 

estimator under the uniform and Jeffery priors 

by using the real data in addition to simulated 

records.  

Results:  

In both cases under a uniform and Jeffery priors, the 

quadratic error loss function leads to the better 

estimation of the expected number of deaths due to 

coronavirus.  

I. INTRODUCTION: 

Coronavirus or COVID-19 is a well-known disease in 

the world. These are a group of related viruses that 

infect the mammals and birds (Ali, & Alharbi, 

2020)[1]. The coronaviruses infect the human beings 

and can cause respiratory tract infections. These 

infections range from mild to fatal (Zumla, & 

Niederman, 2020)[2] that can cause death. 

Coronavirus disease (COVID-19) is caused by the 

SARS-CoV-2 virus (Yonker, Shen, & Kinane, 

2020)[3] that is an infectious disease. Many people 

infected with COVID-19 experience minor to 

moderate symptoms and they do not need any special 

medical treatment. However, some people can become 

seriously ill and require acute medical attention 

(Cascella, et al., 2022[4]; Ali, & Alharbi, 2020[1]; 

Zumla, & Niederman, 2020[2]). 

Acute respiratory syndrome coronavirus-2 

(SARS-CoV-2) is a novel, severe, acute respiratory 

syndrome coronavirus. It was first identified from 

three people with pneumonia connected to the cluster 

of acute respiratory illness cases in Wuhan, a city of 

China. All structural features of the novel SARS-

CoV-2 virus particle occur in related coronaviruses in 
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nature. The first known infections from SARS-CoV-2 

were discovered in Wuhan, China, on 31 December 

2019.. The original source of viral transmission to 

humans remains unclear, as does whether the virus 

became pathogenic before or after the spillover event 

(Yonker, Shen, & Kinane, 2020[3]).  

The virus primarily spreads between people 

through close contact and via aerosols and respiratory 

droplets that are exhaled when talking, breathing, or 

otherwise exhaling, as well as those produced from 

coughs or sneezes (Dhand, & Li, 2020[5]). Human 

coronaviruses are capable of causing illnesses ranging 

from the common cold to more severe diseases such 

as Middle East respiratory syndrome (MERS, fatality 

rate ~34%). SARS-CoV-2 is the seventh known 

coronavirus to infect people, after 229E, NL63, OC43, 

HKU1, MERS-CoV, and the original SARS-CoV 

(Yonker, Shen, & Kinane, 2020[3]). 

 

Another area to know about the coronavirus is 

about the surfaces on which it may survive. It is not 

certain how long the virus that causes COVID-19 

survives on surfaces, but it seems likely to behave like 

other coronaviruses (World Health Organization, 

2020[6]). A recent review of the survival of human 

coronaviruses on surfaces found large variability, 

ranging from 2 hours to 9 days (Cascella, et al., 

2022[4]). The survival time depends on a number of 

factors, including the type of surface, temperature, 

relative humidity and specific strain of the virus. The 

“Three C's” are a useful way to think about this. The 

World Health Organization describe settings where 

transmission of the COVID-19 virus spreads (World 

Health Organization, 2020[6]) more easily are; 

Crowded places, close-contact settings, especially 

where people have conversations very near each other 

and confined and enclosed spaces with poor 

ventilation. 

In statistics, we mostly concern with the two 

primary philosophical perspectives one is the 

frequentist approach and the other one is the 

Bayesian. The frequentist or classical approach was 

established by Professor R.A. Fisher in a series of 

essential publications published about 1930 where the 

parameters are treated as fixed quantities. However, 

the parameters cannot be considered as a fixed 

quantity during the life testing period in many real-

world circumstances including multivariable failure 

models, competing risks, dynamic reliability and 

therefore, the Bayesian framework is introduced. 

Since then many researchers used the Bayesian 

models, for example [7] provides a comprehensive 

treatment of Bayesian survival analysis, [8]. providing 

a broad coverage of the diverse aspects of 

reliability,[9] illustrates the creation of Bayesian 

assurance test plans for system reliability, [10] 

proposed a new analysis approach based on Bayesian 

inference principles for evaluating whether a 

measured bioassay, dosimetry, environmental 

monitoring. Recently, Bayesian estimation approach 

has received great attention by most researchers 

among them are AlAboud [11] using progressive 

censored data and asymmetric loss functions, 

exponential probability distribution under Bayesian 

framework has been studied by Sarhan [12]. Canavos 

and Taokas [13] utilized Weibull distribution, Guure 
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et al. [14] used an extension of Jeffrey’s prior to 

investigate Bayesian estimation for two-parameter of 

Weibull distributions. Elfessi and Reineke [15] 

discussed that how to determine the classical 

estimators under different choices with in a Bayesian 

Paradigm, Asgharzadeh [16] discussed the Bayesian 

estimation for the record values. Under the entropy 

loss, Shawn Ni and Dongchu Sun [17] investigated 

the Bayes estimator of the Linear Time Series (LTS) 

model. They developed the Bayes estimator and 

demonstrated that it involves frequentist regressor 

expectation. 

They used a Markov Chain Monte Carlo approach 

thatsimulates the posteriors of the LTS parameters in 

conjunction with frequentist regressor expectation. 

They used Bayesian estimates to test an LTS model 

for seasonal impacts in some macroeconomic 

variables in the United States. Eskandarzadeh et al. 

explored the Bayesian estimation of the scale 

parameter of the exponential distribution under 

maximum ranked sampling. Singh and Kumar [18] 

defined the Bayesian estimation under a multiply type 

2 censoring scheme. Ahmed et al. [9] considered 

Bayesian Survival Estimator for the Weibull 

distribution with censored data. Feroze [19] used 

multiple priors and loss functions to do Bayesian 

analysis of the scale parameter of an inverse Gaussian 

distribution. Using the squared error loss function, 

Almutairi and Heng [20] derived the shape parameter 

of the Generalized Power Distribution (GPD) using a 

Bayesian technique under noninformative (uniform) 

and informative (gamma) priors. Hasan and Baizid 

[21] discussed the Bayesian analysis of the parameter 

of Exponential distribution by using the Gamma prior 

with different loss. Sankudey [22] described the 

Bayesian Estimation of the Shape Parameter of the 

Generalized Exponential Distribution, Ijaz et al 

presented the Bayesian estimators of the parameter for 

the exponential distribution under Jeffery prior with 

various loss functions, a similar work on Bayesian 

analysis of the Shape Parameter of Lomax 

Distribution under various Priors with different loss 

functions has been studied by Ijaz et al [23]. Azam 

and Ahmad [24] using a Bayesian technique, 

estimated the scale parameter of the Nakagami 

distribution. Naji et al [25] discussed the Bayesian 

analysis for both Parameters of Gamma Distribution 

with precautionary loss function. 

II. LIKELIHOOD FUNCTION 

A random variable X follows Inverse Pareto 

distribution, by Guo, L., & Gui, W. (2018) [26] with 

parameters α ≥ 0 with the following 
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Bayesian Estimation of Inverse Pareto Distribution 

Posterior under Uniform Prior 

The posterior probability distribution of the Inverse 

Pareto distribution under a uniform prior is 

characterized as 
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Posterior distribution under Jeffery Prior 

The posterior probability distribution of the Inverse 

Pareto distribution under a uniform prior is 

characterized as 
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Bayes Estimates under a Uniform Prior with 

different loss functions 

This section explains the computation of Bayes 

estimators under a uniform prior with various loss 

functions. 

Squared Error loss function (SELF) 

 

The expression for SELF for   is defined by 
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The final result for   is given below  
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Quadratic Error loss function (QELF) 

The QELF can be explained as 
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Simplifying the above expression, we get 
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Weighted Error loss function (WELF) 

The WELF can be explained as below 
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Simplifying the above equation for   
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Simplifying the above expression, we get 
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Precautionary Error loss function (PELF) 

The PELF can be defined as below 
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Simplifying further the above equation for   
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Hence, we obtained the following expression  
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Bayes Estimates under Jeffery Prior with different 

loss functions 

This section elaborates the derivation of Bayes 

estimates for various error loss 

functions under Jeffery prior 

Squared Error loss function (SELF) 

The expression for SELF for̂  is defined by
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In the end, we obtained the following result 
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Quadratic Error loss function (QELF) 

The QELF can be explained as
 

The ̂  estimator can be explained by simplifying the 

following expression 
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After simplifying, we obtain the result below  

11.2
2

ˆ
C

n
QELF

−
=  

 

   

Weighted Error loss function (WELF) 

The WELF can be explained as below 
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Lastly, we obtained the following result  
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Precautionary Error loss function (PELF) 

The PELF can be defined as below 
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The Bayes estimator λˆ PELF can be defined as 
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Hence, we determined the result 

13.2
)1(

ˆ
C

nn
PELF

+
=  

Quantile Function 

For a simulation study, we have considered the 

following quantile function 

1

1
1

−
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−
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where, U is distributed uniformly over the interval 

[0,1]. 

Simulation Study  

In this study, we constructed a sample of size n for 

each estimator using the 

Monte Carlo simulation method in the situation of 

uniform and Jeffery priors with a replication of 

w=5000. We have computed the estimated values of

SELF̂  , QELF̂  , WELF̂  and PELF̂  

A brief Monte Carlo simulation procedure using the 

Inverse Pareto distribution is given below; 

1. Using the quantile function, generate random 

samples from the New distribution. 

2. Calculate the Bayes estimator for numerous 

loss functions using the Jeffery and uniform 

priors. 

3.  The above procedure is repeated w times for 

each sample size and the average numbers of 

Bayes estimators and also MSE’s are 

calculated. 

Criteria to Decide the Best Estimator 

To evaluate the performance and make a comparison 

among different estimators ( SELF̂  , QELF̂  , WELF̂ ,

PELF̂ ) the mean squared error (MSE) will be 

quantified with the following mathematical formula 

 22 )ˆ()ˆvar()ˆ()ˆ(  BiasEMSE +=−=  

 
 

Generally, the estimator with a smaller value of MSE 

will be considered as the best one among other 

estimators. 

APPLICATION 

This section elaborates a real data set of Covid-19 

mortality rate which is recently cited by Farooq et.al 

[31] with the following information’s 

 

0.009, 0.014, 0.014, 0.023, 0.027, 0.032, 0.036, 0.041, 

0.05, 0.054, 0.063, 0.095, 0.118, 0.122, 0.154, 0.181, 

0.186, 0.213, 0.24, 0.258, 0.276, 0.294, 0.299, 0.389, 

0.412, 0.421, 0.435, 0.503, 0.579, 0.611, 0.647, 0.761, 

0.797, 0.91, 0.96, 1.073, 1.145, 1.218, 1.272, 1.322, 

1.412, 1.553,1.743, 1.888, 1.992, 2.069, 2.155, 2.327, 

2.553, 2.648, 2.712, 2.879, 2.983, 3.196, 3.336, 3.445, 

3.486, 3.776, 3.776, 3.952, 4.088, 4.251, 4.459, 4.604, 

4.83, 4.984, 5.129, 5.283, 5.419, 5.546, 5.704, 5.962, 

6.315, 6.714, 6.985, 7.338, 7.642, 8.013, 8.321, 8.76, 
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9.063, 9.358, 9.833, 10.209,  0.666, 11.15, 11.15, 

11.549, 12.354, 12.852, 13.468, 14.002, 14.618, 

15.311, 15.849, 16.252, 16.728, 16.999, 17.669, 

17.936, 18.267, 18.643, 18.864, 19.485, 19.897, 

20.25, 20.603, 20.603, 20.911, 21.558, 21.907, 

22.282, 22.559, 22.898, 23.192, 23.527, 23.84, 

24.084, 24.383, 24.564, 24.564, 24.999, 25.207, 

25.347, 25.528, 25.7, 25.845, 26.09, 26.198, 26.357, 

26.357, 26.447, 26.551, 26.674, 26.818, 26.941, 

26.941, 27.054, 27.158, 27.158, 27.226, 27.321, 

27.398, 27.47, 27.534, 27.602, 27.67, 27.747, 27.792, 

27.855, 27.896, 27.955, 27.955, 28.023, 28.073, 

28.109, 28.154, 28.208, 28.267, 28.267, 28.317, 

28.371, 28.403, 28.444, 28.448, 28.466, 28.494, 

28.512, 28.647, 28.679, 28.702, 28.702, 28.724, 

28.747, 28.788, 28.815, 28.838, 28.851, 28.878, 

28.896, 28.924, 28.942, 28.969, 29.01, 29.041, 

29.046, 29.064, 29.082, 29.118, 29.141, 29.173, 

29.204, 29.231, 29.272, 29.308, 29.331, 29.354, 

29.422, 29.458, 29.485, 29.485, 29.53, 29.585, 

29.625, 29.662 ,29.689, 29.743, 29.788, 29.824, 

29.883, 29.942, 29.974, 30.051, 30.123, 30.146, 

30.209, 30.295, 30.341, 30.399, 30.454, 30.494, 

30.508, 30.535, 30.599, 30.671, 30.762, 30.811, 

30.888, 30.943, 31.006,31.088, 31.205, 31.341, 

31.432, 31.545, 31.586, 31.69, 31.785, 31.939, 

32.106, 32.183, 32.328, 32.414, 32.563, 32.731, 

32.812, 34.229, 34.419, 34.687, 34.841, 35.058, 

35.325, 35.506, 35.75, 35.954, 36.149, 36.33, 36.629, 

36.968, 37.145, 37.394, 37.588, 37.851, 38.019, 

38.421, 38.693, 38.947, 39.173, 39.494, 39.82, 

39.983, 40.314, 40.789, 41.106, 41.486, 41.876, 

42.238, 42.518, 42.89, 43.265, 43.768, 44.153, 

44.438, 44.701, 44.95, 45.235, 45.484, 45.746, 

46.068, 46.439, 46.679, 46.855, 47.123, 47.358. 

Fig1 describe the kernel density, boxplot, TTT plot, and Q-

Q plot of the data set. 

 

Fig1. Plots for the Covid-19 mortality rates 

 

 

 

 

 

 

 

 

 

Table 1. Estimated value and MSE of α under uniform 

Prior, when n=80 
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Table 1 represents the estimated values and MSE’s for 

various values of ̂ at fixed samples and other 

parameter values. The table shows that the MSE for 

the Bayes estimator of Quadratic Error Loss function 

as compared to other loss functions in smaller, but 

much closer to the MSE of the Weighted Error Loss 

function. 

Table 2. Estimated value and MSE of α under uniform 

Prior, when α =2.5 

 n Criteria BSE BQEL BWEL BPEL 

20 

Estimated 

value 
4.6622 4.1835 4.3497 4.6802 

MSE 34.656 27.774 29.3034 33.8807 

40 

Estimated 

value 
3.7021 3.5184 3.5951 3.70423 

MSE 16.4247 14.6777 15.28 16.1857 

60 

Estimated 

value 
3.42485 3.3181 3.3775 3.4843 

MSE 12.6455 11.8318 12.2196 13.0736 

80 

Estimated 

value 
3.34094 3.23224 3.304112 3.3596 

MSE 11.5541 10.8096 11.3208 11.7566 

90 
Estimated 

value 
3.26 3.2 3.23 3.28 

MSE 10.81 10.4 10.6 10.9 

 

Table 2 represents the estimated values and MSE’s for 

various values of different samples at ̂ fixed values 

and other parameter values. The table shows that the 

MSE for the Bayes estimator of Quadratic Error Loss 

function as compared to other loss functions in 

smaller, but much closer to the MSE of the Weighted 

Error Loss function. 

Fig 2 clearly shows that BQEL performs well and 

become closer to BWEL when the sample size is 

large. Similarly, the behavior of BSE and BPEL much 

similar when the sample size is increases.   

 

 

Figure 2. Graph of MSE for of α under a uniform 

Prior, when α =2.5 

Table 3. Estimated value and MSE of α under Jeffery 

Prior, when n=80 

  
Criteria BSE BQEL BWEL BPEL 

 ∝ 

1.5 

Estimated 

value 
3.2790 3.2050 3.2049 3.2893 

MSE 11.1248 10.6415 10.4351 11.2269 

2.5 

Estimated 

value 
3.2722 3.2160 3.2459 3.3102 

MSE 11.0874 10.7053 10.8926 11.3301 

3.5 
Estimated 

value 
3.2939 3.2144 3.2546 3.2982 

0
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40

1 2 3 4 5

BSE BQEL BWEL BPEL

 ∝ Criteria BSE BQEL BWEL BPEL 

0.5 

Estimated 

value 
3.3068 3.2417 3.2768 3.3624 

MSE 11.3123 10.8845 11.1236 11.7324 

1.5 

Estimated 

value 
3.3447 3.2659 3.2976 3.36009 

MSE 11.6601 11.0887 11.2874 11.7378 

2.5 

Estimated 

value 
3.3354 3.2397 3.2859 3.3561 

MSE 11.5603 10.8889 11.2091 11.693 

3.5 

Estimated 

value 
3.3295 3.2468 3.2807 3.3764 

MSE 11.5019 10.9343 11.1311 11.8478 

4.5 

Estimated 

value 
3.3383 3.209 3.232 3.3278 

MSE 11.5406 10.4601 10.6011 11.4761 
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MSE 11.2603 10.7208 10.9721 11.2798 

4.5 

Estimated 

value 
3.2904 3.2019 3.2699 3.3130 

MSE 11.2186 10.5897 11.1113 11.3849 

5.5 

Estimated 

value 
3.2977 3.2161 3.2262 3.3018 

MSE 11.2683 10.7128 10.6868 11.3097 

 

Table 3 represents the estimated values and MSE’s for 

various values of ̂ at fixed samples and other 

parameter values. The table shows that the MSE for 

the Bayes estimator of Quadratic Error Loss function 

as compared to other loss functions in smaller, but 

much closer to the MSE of the Weighted Error Loss 

function. 

 

Table 4. Estimated value and MSE of α under Jeffery 

Prior, when α =1.5 

  
Criteria BSE BQEL BWEL BPEL 

n 

20 

Estimated 

value 
4.3928 4.0236 4.2686 4.5130 

MSE 30.3261 25.4833 29.0821 31.6074 

40 

Estimated 

value 
3.6314 3.4008 3.4998 3.6559 

MSE 15.5897 13.4976 14.4444 15.9376 

60 

Estimated 

value 
3.3738 3.2735 3.3328 3.4261 

MSE 12.2626 11.5768 12.0171 12.7130 

80 

Estimated 

value 
3.2910 3.2126 3.2515 3.3246 

MSE 11.2701 10.7167 10.9972 11.4606 

90 

Estimated 

value 
3.2500 3.1900 3.2300 3.2900 

MSE 10.8000 10.4000 10.7000 11.1000 

 

Table 4 represents the estimated values and MSE’s for 

various values of different samples at fixed values 

̂ and other parameter values. The table shows that 

the MSE for the Bayes estimator of Quadratic Error 

Loss function as compared to other loss functions in 

smaller, but much closer to the MSE of the Weighted 

Error Loss function. 

Fig 3 also demonstrate that BQEL perform well as 

compared to others but as the sample size is increases, 

BQEL, BWEL, and BPEL are converges rapidly to 

each other’s.  

 

Fig 3. Graph of MSE for of α under a Jeffery Prior, 

when α =1.5 

Simulation study 

In this section, a simulation study is conducted by 

choosing different values of parameters with 

replication of 5000. Following are the numerical 

results 

Table 5. Estimated value and MSE of α under 

uniform Prior, when n=80 

 ∝ Criteria BSE BQEL BWEL BPEL 

0.5 

Estimated 

value 
0.5127 0.5005 0.5053 0.516 

MSE 0.1993 0.1886 0.1928 0.2022 

1.5 

Estimated 

value 
1.5428 1.5001 1.5166 1.5468 

MSE 2.199 2.0744 2.1227 2.2113 

2.5 

Estimated 

value 
2.5637 2.5047 2.5311 2.5798 

MSE 6.3054 6.009 6.1367 6.3883 

3.5 
Estimated 

value 
3.5826 3.5081 3.5401 3.6086 
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MSE 12.5003 11.9841 12.2046 12.6903 

4.5 

Estimated 

value 
4.6226 4.4979 4.5502 4.6328 

MSE 21.0138 19.8632 20.3378 21.0917 

 

Table 5 represents the estimated values and MSE’s for 

various values of ̂ at fixed samples and other 

parameter values. The table shows that the MSE for 

the Bayes estimator of Quadratic Error Loss function 

as compared to other loss functions in smaller, but 

much closer to the MSE of the Weighted Error Loss 

function. 

Table 6. Estimated value and MSE of α under uniform 

Prior, when α =2.5 

 n Criteria BSE BQEL BWEL BPEL 

10 

Estimated 

value 
3.0523 2.5072 2.7937 3.1723 

MSE 10.0878 6.7922 8.3749 10.8749 

20 

Estimated 

value 
2.7331 2.5014 2.6372 2.8267 

MSE 7.6204 6.2603 6.9598 8.052 

30 

Estimated 

value 
2.6754 2.5024 2.583 2.7267 

MSE 7.0474 6.141 6.5644 7.321 

40 

Estimated 

value 
2.6199 2.5062 2.5648 2.6593 

MSE 6.6825 6.1073 6.3967 6.8908 

50 

Estimated 

value 
2.6016 2.4944 2.5434 2.6252 

MSE 6.544 6.0055 6.253 6.6723 

 

Table 6 represents the estimated values and MSE’s for 

various values of different samples at fixed values 

̂ and other parameter values. The table shows that 

the MSE for the Bayes estimator of Quadratic Error 

Loss function as compared to other loss functions in 

smaller, but much closer to the MSE of the Weighted 

Error Loss function. 

Figure 4 explore that the best results can be achieved 

with the BQEL when the estimator is deal with the 

uniform priors.  

 

Figure 4. Graph of MSE for of α under a Jeffery 

Prior, when α =2.5 

Table 7. Estimated value and MSE of α under 

uniform Prior, when n=80 

 ∝ Criteria BSE BQEL BWEL BPEL 

1.5 

Estimated 

value 
1.5197 1.4813 1.4984 1.5317 

MSE 2.1323 2.0202 2.0691 2.1678 

2.5 

Estimated 

value 
2.5351 2.4687 2.4985 2.5461 

MSE 6.1631 5.8320 5.9771 6.2157 

3.5 

Estimated 

value 
3.5409 3.4623 3.5020 3.5684 

MSE 12.2111 11.6564 11.9358 12.4071 

4.5 

Estimated 

value 
4.5548 4.4494 4.4913 4.5757 

MSE 20.3761 19.4250 19.8042 20.5711 

5.5 

Estimated 

value 
5.5821 5.4228 5.5000 5.5971 

MSE 30.7811 29.0328 29.8800 30.9464 

Table 7 represents the estimated values and MSE’s for 

various values of  at fixed samples and other 

parameter values. The table shows that the MSE for 

the Bayes estimator of Quadratic Error Loss function 

as compared to other loss functions in smaller, but 

much closer to the MSE of the Weighted Error Loss 

function. 
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Table 8. Estimated value and MSE of α under 

uniform Prior, when α =1.5 

 n 
Criteria BSE BQEL 

BWE

L 
BPEL 

10 

Estimated 

value 
2.7608 2.2146 2.4972 2.9285 

MSE 8.16 5.1902 6.6208 9.224 

20 

Estimated 

value 
2.6379 2.3697 2.5162 2.6891 

MSE 6.9779 5.5929 6.3551 7.2723 

30 

Estimated 

value 
2.5927 2.4077 2.5156 2.6308 

MSE 6.61 5.6738 6.2064 6.8006 

40 

Estimated 

value 
2.5584 2.4322 2.4899 2.5877 

MSE 6.3631 5.7337 6.0175 6.5178 

50 

Estimated 

value 
2.5487 2.4526 2.4964 2.5736 

MSE 6.2787 5.8042 6.0167 6.4043 

Table 8 represents the estimated values and MSE’s for 

various values of different samples at fixed values 

̂ and other parameter values. The table shows that 

the MSE for the Bayes estimator of Quadratic Error 

Loss function as compared to other loss functions in 

smaller, but much closer to the MSE of the Weighted 

Error Loss function. 

Figure 5 declared that under the Jeffery prior, the 

better performance can be achieved with the BQEL 

estimator. 

 

Fig 5. Graph of MSE for of α under a Jeffery Prior, 

when α =1.5 

Conclusion 

Bayesian analysis remained the key approach for 

modeling different type of diseases because of having 

the prior information. The purpose of such type of 

modeling is to determine the expected number of 

infectious patients and deaths from it. This study 

focuses on the Bayesian analysis of the Inverse Pareto 

distribution with non-informative (Uniform and 

Jeffery) priors under four loss functions. The 

mathematical work is supported by using the real data 

of Covid-19 mortality rates in Pakistan. The results 

show that considering a uniform prior, Bayes 

estimator of the quadratic error loss function (BQEL) 

perform well than the other loss functions. Moreover, 

it’s clearly showing that as the sample size increases, 

the MSE of the shape parameter of the Inverse Pareto 

distribution in BSE and BPEL loss function turn out 

to be equal as portrayed in Figure 2. In the case of 

Jeffery prior, the quadratic error loss function (BQEL) 

provides better results as compared to other 

approaches. Figure 3 also illustrates that as the sample 

size increases, the BSE approach and the BPEL 

hastily become indistinguishable. We conclude that 

the Quadratic error loss function under both priors 

lead to the better estimation of the mortality rate of the 

Covid-19 in Pakistan. 
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