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ABSTRACT 

Objective 

For improved understanding of stress 

mechanism and machinery, analysis of 

regulatory pathways of multiple transcripts 

(i.e., non-coding RNAs) and salt stress-

responsive genes is a vital need. 

Methodology 

In the current study, seeds of two cultivars of 

Brassica napus Dunkled and Cycloned were 

used in completely randomized design with 

three replicates. Plants were categorized into 

two S1 and So treatments of NaCl. Growth 

parameters of plants were measured, and 

effects of salinity were observed. 

Transcriptome analysis was carried out after 

isolation of total RNA by analyzing protein 

coding 10 upregulated and 10 downregulated 

genes on NCBI, KEGG, UniProt, Interpro. 

Phylogenetic analysis of genes was done by 

using different analytical software i.e., NCBI 

BLAST, MUSCLE for alignment, BioEdit 

analytical tool for editing the sequences and 

MEGA7 was used for phylogenetic tree to 

describe the ancestral relationship of plant 

genes with other identified genes. 

Results 

Results showed that the CRM-domain 

protein was involved in the mitochondrial 

splicing introns, which was ultimately very 

crucial for growth and stress responses of 

plants; and, for all stress reducing 

mitochondrial functions. 

Conclusion 

According to the results, functions of selected 

upregulated and downregulated genes of 

Brassica napus were predicted. 

Keywords: Canola, non-coding RNAs, 

Brassica napus, salt stress. 
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INTRODUCTION 

Area-wise, Pakistan is the 8th country that is 

affected with salinity (Khan et al., 2017). 

Every year, it has been estimated that 10 

million hectares of agricultural land 

throughout the globe are destroyed by 

salinity (Machado and Serralheiro, 2017). 

Salinity is also dominantly disturbing the 

ecological environment causing degradation 

to the fertile soil specifically to highly 

irrigated lands globally (Sohaib AU et al., 

2023) (Akram et al., 2017: Kumar et al., 

2017). 

Studies have revealed how plants sense and 

respond to abiotic stresses through the 

various physiological and metabolic 

processes (. This study helps to understand 

the coping mechanisms of plants against 

stresses and to plan strategies to develop salt-

tolerant plants (Munns et al., 2016). When 

plants are found-out to salt stress their 

epidermal cells and membrane proteins at 

root hairs sense the extent of salt stress and 

send signals to plant parts and the salt stress-

responsive genes express themselves and 

instantly triggers the related biochemical 

pathways, ultimately balancing the changes 

in CO2 assimilation, growth regulatory 

hormones ion homeostasis and detoxification 

of RO Species, (Hasegawa et al., 2002; 

Munns and Tester, 2008). Saltoverly 

sensitive (SOS) pathway genes and their 

transporters have been identified, which are 

found to be associated with calcium-binding 

proteins and control ionic homeostasis under 

salt stress (Ishitani et al., 2000, Ismail et al., 

2017). Over the last few decades, proteomic 

profiling and transcriptomic mapping in 

plants have attained huge attention for the 

identification of the physiological processes 

and salt tolerance mechanisms in plants (Guo 

et al., 2015, Iqbal et al., 2018). For the 

identification of transcriptome variations in 

plants and for the evaluation of molecular 

profiles for food and oiled crops, a technique 

known as next-generation sequencing (NGS) 

has been introduced. 

Various approaches are being and have been 

introduced to facilitate production of crops in 

saline soils; improvement of crops through 

breeding is possibly among the best 

approaches to achieve this goal (Wani et al., 

2016). Genetic engineering approaches offer 

a viable alternative to standard plant breeding 

for some crops and now a days extensively 

utilized throughout the globe to harvest salt 

stress tolerant crops. To produce stress 

tolerant plants different identified approaches 

like co-expression of various genes, pre- and 

post-transcriptional modifications 

(small/microRNAs) and epigenetic control of 

gene expression have been introduced in the 

world of genetic engineering (Kumar et al., 

2018; Shriram et al., 2016). 

Kyoto Encyclopedia of Genes and Genomes 

i.e., KEGG is a resource that hugely covers 

15 main databases, or it is a bioinformatics 

analyses tool which in cooperates all the 

genomic (Orthology, Genome and Genes) 

information, chemical (compounds, 

Reactions, Enzymes, Glycan, Rpair and 

Rclass) and systemic functional (DISEASE, 

BRITE, MODULE, PATHWAY, DRUG and 

ENVIRON) information regarding genes 

(kanehisa et al., 2012). Its main objective is 

to collect the set of information of genes at 

genomic level for their high-level structure 

sequences from KEGG Genes and 

functioning from KEGG Pathway (kanehisa 
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et al., 2016). European Life Science 

Infrastructure ELIXIR introduced an 

analytical tool known as g: profiler who is 

commonly used for enriched biological 

entries like proteins and genes for their 

computational analysis. It provides highly 

qualified data to measure the functional terms 

for the given gene list, source types, 

organisms, and identifier spaces (Raudvere et 

al., 2019).  

A branching diagram that demonstrates the 

evolution and relationship among biological 

species; biological tree is based on the 

physical or molecular characteristics of 

species keeping in view the similarities and 

differences (Felsenstein, 2004). It tells the 

common ancestor and relation between 

species and taxa by using Fasta sequences of 

DNA and Protein (Hall and Barlow, 2006). 

MUSCLE is an alignment software which 

can align the multiple sequences of Protein or 

DNA in a single go (Edgar, 2004). BioEdit 

analytical tool is used to trim or edit the 

aligned sequences to run it on MEGA for 

phylogenetic analysis. MEGA7 is the 

analytical tool that undergoes the process of 

phylogenetic analysis following another 

analytical tool (Tamura et al., 2011).   

MATERIAL AND 

METHODOLOGY 

2.1 Seeds collection and Experimental 

Design 

Seeds of salt tolerant cultivars (Dunkled) and 

salt sensitive cultivars (Cyclone) were 

procured from oil seed section of Ayub 

Agricultural Research Institute (AARI), 

Faisalabad, Pakistan. Experiments were 

carried out according to the completely 

randomized design (CRD) with three 

replicates. 

2.1.1 Sowing 

Seeds were sown in sand culture (25 seeds 

per plant) supplied with Hoagland nutrient 

solution.  

2.1.2 Thinning 

After five days of germination, thinning was 

done leaving 5 plants per pot. 

2.1.3 Application of salt stress 

Plants were divided into two treatments:  

• So or Control supplied with nutrient 

solution containing 0 mmol NaCl 

• S1 is supplied with a nutrient solution 

containing 200 mmol NaCl. 

2.2 Data Collection and Growth analysis 

Plants responses towards salinity were 

observed thoroughly and recorded 

accordingly for growth parameters.  

2.2.1 Plant fresh weight 

From each replicate, fresh weights using 

electric balance and mean values of both 

types of plants were calculated. 

2.2.2 Plant dry weight 

Harvested plants were air-dried for 2 weeks. 

Their weights were calculated to determine 

the mean. 

2.2.3 Plant height 

The height of both plants was measured using 

a meter rod from base of the plant to the tip, 

furthermore, mean was determined.  

2.3 Transcriptome analysis 

Transcriptome data was obtained from a 

previous study (Ulfat et al., 2020). 

Respective transcriptome analysis was 
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carried out after isolation of total RNA. 

Leave samples were harvested right after 24 

hours of salinity and afterward leaves were 

stored in RNA-Later solution. NGS 

sequencing was carried out at Macrogen 

(Korea). Raw data was analyzed for 

differential gene expression as non-

characterized differentially expressed 

upregulated and downregulated genes were 

analyzed using appropriate tools of 

bioinformatics.  

Gene Description from NCBI 

Gene description, symbol, gene location, 

gene type, length and exon count of 

uncharacterized upregulated differentially 

expressed genes were collected online from 

NCBI (https://www.ncbi.nlm.nih.gov/ ). 

2.3.1 Data retrieval of protein coding 

genes 

The selected upregulated and downregulated 

genes of Brassica napus L. were subjected to 

KEGG genomics database tool 

(https://www.kegg..jp/) and orthology 

(https://www.kegg.jp/ssdb-

bin/ssdb_best?org_gene) was individually 

explored online. Furthermore, details of their 

protein families were collected from Pfam 

search tool (https://www.genome.jp/dbget-

bin/www_bget?pfam) given on the same 

KEGG site. Protein domains and details of 

their sub-domains were studied from 

Interpro analytical tool 

(https://www.genome.jp/dbget-

bin/get_linkdb?-t+interpro ). Accession 

number, entry, sequences, and consensus of 

these proteins families were taken from 

NCBI-CDD search tool 

(https://www.genome.jp/dbget-

bin/get_linkdb?-t+ncbi-cdd ). 3D structures, 

structural functions and Gene ontology of 

varying hits from dependent databases were 

overviewed and their of each upregulated 

gene were also predicted using Uniprot 

analytical tool 

(https://www.genome.jp/dbget-

bin/get_linkdb? ). For computational 

analysis, an online analytical tool g: profiler 

(https://biit.cs.ut.ee/gprofiler/gost) was used 

to measure the molecular, cellular, and 

biological highly up-to-date functions of all 

the given sources like genes and proteins of 

organisms. 

2.4 Statistical Analysis 

Growth data were subjected to statistical 

analysis using CoStat statistical software.  

2.5 Phylogenetic Analysis 

For the phylogenetic analysis of selected 

upregulated and downregulated genes of 

Brassica napus, four steps were carried out. 

BLAST was carried out for the selected gene 

individually on NCBI BLAST 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi ). 

The most probable identical sequences were 

selected and their complete Fasta sequences 

were aligned to get clustal free sequences on 

MUSCLE 

(https://www.ebi.ac.uk/Tools/msa/muscle/ ). 

The aligned sequences were further edited 

and cropped on BioEditor analytical tool 

(https://bioedit.software.informer.com/7.2/ ) 

for phylogenetic analysis. Lastly, the aligned 

and cropped sequences were run on MEGA7 

analytical tool 

(https://www.megasoftware.net/ ) to analyze 

the ancestor and evolutionary history of 

selected genes, out of them genes with strong 

bootstrap were identified and compared to 

predict their physical and molecular 

https://www.ncbi.nlm.nih.gov/
https://www.kegg..jp/
https://www.kegg.jp/ssdb-bin/ssdb_best?org_gene
https://www.kegg.jp/ssdb-bin/ssdb_best?org_gene
https://www.genome.jp/dbget-bin/www_bget?pfam
https://www.genome.jp/dbget-bin/www_bget?pfam
https://www.genome.jp/dbget-bin/get_linkdb?-t+interpro
https://www.genome.jp/dbget-bin/get_linkdb?-t+interpro
https://www.genome.jp/dbget-bin/get_linkdb?-t+ncbi-cdd
https://www.genome.jp/dbget-bin/get_linkdb?-t+ncbi-cdd
https://www.genome.jp/dbget-bin/get_linkdb
https://www.genome.jp/dbget-bin/get_linkdb
https://biit.cs.ut.ee/gprofiler/gost
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ebi.ac.uk/Tools/msa/muscle/
https://bioedit.software.informer.com/7.2/
https://www.megasoftware.net/
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functions of selected up and downregulated 

genes.  

RESULTS 

3.1 Growth analysis 

3.1.1 Fresh weight, Dry weight, and Height 

of canola plant 

The results of fresh weight, dry weight and 

height of plants are presented in table 3.1. 

The data regarding interactive effects 

indicated the co-relation between salinity and 

cultivars that seemed to be significant or non-

significant sources of variation (figure 3.1; 

3.2). In the saline cultivars the height of plant 

is seemed to retard and in control cultivars 

height increased accordingly. The meaning, 

by comparing both cyclone and dunkled 

cultivars of Brassica napus L. were 

determined and shown in table 3.2. 

Table 3.1: Analysis of variance (ANOVA) for the data of fresh weight (g), dry weight (g)and height of two cultivars of canola (Brassica napus L.) 
plants grown under control (0 mMNaCl) and saline (200 mMNaCl) condition. 

 

SOV DF MS F 

Fresh 

weight 

Dry 

weight 

height Fresh 

weight 

Dry 

weight 

Height 

 

Fresh 

weight 

Dry 

weight 

Height  

Main 

Effects 

Cultivars 

Salinity 

 

1 

1 

 

1 

1 

 

2 

1 

 

25 

180 

 

3.96 

5.46 

 

0.27 

169 

 

20** 

145*** 

 

0.0002*** 

0.0001*** 

 

0.937ns 

0.0007*** 

Interactive 

Effects 

Cultivar x 

Salinity 

 

1 

 

1 

 

2 

 

4 

 

0.0075 

 

0.77 

 

3ns 

 

0.79ns 

 

0.835ns 

Error 8 8 6 1 0.095 4.20    

Total 11 11 11 220 10.3 196    

Key:  
ns = non-significant (p>0.05) 
* = significant (p≤0.05) 
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*** = Significant (p≤0.001) 
 

 
 

Table 3.2: Fresh weight (g/plant), Dry weight and height for two cultivars of canola (Brassica napus L.) plants grown under control (0 mMNaCl) 
and saline (200 mMNaCl) conditions (Mean ± SD; n=3) 

 

 Control 

(0 mMNaCl) 

Saline 

(200 mMNaCl) 

 Mean of 

Fresh 

weight 

Mean of 

dry 

weight 

Mean of 

height  

Mean of 

Fresh 

weight 

Mean of 

dry 

weight 

Mean of 

height  

Dunkled 

 ax 

36.66 ± 

1.52  

 ax 4.9 ± 

0.20 

 ax 

37.04± 

1.00 

bx 30.13 

± 0.80 

bx 3.5 ± 

0.25 

bx 30.1 

± 1.00 

Cyclone 
ax35.00 

± 1.00 

ax3.7 

±0.50 

ax34.9 

±1.00 

 by 

26.00 ± 

1.00 

 by 2.4 

±0.15 

 by 

27.45 

±0.84 

LSD (0.05)(fresh weight) = 1.48 

LSD (0.05)(Dry weight)= 0.412 

LSD (0.05)(Height)= 3.54 

Key:  
a,b= letters used to distinguish means in 
comparison of cultivars  
x,y= letters used to distinguish means in 
comparison of control vs saline 
 

 

 

Graph 3.1: Plant Fresh weight (g) for two cultivars (85 days old) of 

canola grown under 0 and 200 Mm NaCl stress. 
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Graph 3.2: Plant dry weight (g) for two cultivars (85 days old) of 

canola grown under 0 and 200 mMNaCl stress. 
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4.2 Selected Upregulated and 

Downregulated genes of Brassica napus L. 

Our study comprised of 20 genes and their 

varying expressions from RNA-seq data from 

the previous study on canola (Brassica napus 

L.) by Ulfat (2020) submitted to NCBI 

among them; 10 were upregulated and 10 

were downregulated under NaCl stress. 

Selection was done among uncharacterized 

genes. Following are the genes that were 

subjected to the present study: 

The upregulated gene 106401437 was 

worked out to be uncharacterized aarF 

domain-containing protein kinase, 

chloroplastic-like (At1g71810). It was 

located on chromosome C6 of Brassica 

napus L. It was 7,713 nt long a protein coding 

gene with 20 exons. This gene had 3 families: 

ABC1, WaaY and APH with 2, 1 and 2 

protein domains respectively. 

For the phylogenetic analysis initially, 

BLAST was carried out and relevant 19 

sequences were selected. Fasta sequences 

were aligned and edited on analytical tools 

and were run on MEGA 7 and it has fallen in 

the clade 1 out of 2 (figure 3.3). It formed a 

sister clade with gene XM 013841954 with 

strong bootstrap of Brassica napus having 

aarF domain-containing chloroplast protein 

kinases. This gene consists of several protein 

families acting to be chaperonins, resisting 

antibiotics, phosphorylates Hep II in plants 

and helps to suppress the effect of 

accumulated Reactive Oxygen Species. This 

upregulated gene is predicted to be involved 

in protein phosphorylation, inducing 

biosynthetic pathways and suppression of 

oxidative species during salinity. 

 

Figure 3.1: Phylogenetic analysis of Brassica napus gene 

106401437 with respect to other genes. Tree inferred maximum 

likelihood. The numbers against the branches indicate the 
percentage (>50%) at which the branch supported in 1000 

bootstrap replications. Genebank accession numbers are given at 

the end of species name. Highlighted taxa indicated the species to 
be reported.  
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Graph 3.3: Plant height for two cultivars (85 days old) of canola grown 

under 0 and 200 mM NaCl stress. 
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The upregulated gene 106353398 was 

worked out to beprotein Activity of BC1 

Complex Kinase 3, chloroplastic-like. It was 

located on chromosome A7 of Brassica 

napus L. It was 3,435nt long, a protein coding 

gene with 4 exons. This gene had 5 families: 

ABC1, APH, PKianse, HEAT_2 and WaaY 

with 2, 2, 1, 0 and 1 protein domains 

respectively. 

For the phylogenetic analysis of upregulated 

gene 106353398 initially BLAST was carried 

out and 23 related plant sequences were 

selected. Fasta sequences were aligned and 

edited on analytical tools and were run on 

MEGA 7 and it has fallen in the clade 1 out 

of 2 (figure 3.4). It formed a sister clade with 

two genes: XM 013793154 and XM 

009106267 with strong bootstrap of Brassica 

napus. Both these sister genes have aarF 

protein domains which are chloroplast type in 

nature. It is predicted that this gene is 

involved in the regulation of phosphorylation 

of proteins, helps in ionic and metallic 

binding and cell division during retarded 

growth phases of plants life cycle. 

 

Figure 3.4: Phylogenetic analysis of Brassica napus gene 

106353398 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported.  

 

The upregulated gene 106440663 was 

worked out to beprotein Uncharacterized 

aarF domain-containing protein kinase 

At5g05200, chloroplastic-like. It was located 

on chromosome Un of Brassica napus L. It 

was 3,586 nt long a protein coding gene with 

11 exons. This gene had 2 families: ABC1 

and APH with 1 protein domain each.  

For the phylogenetic analysis of upregulated 

gene 106440663 initially BLAST was carried 

out and 22 different predicted plant 

sequences were selected. Fasta sequences 

were aligned and edited on analytical tools 

 Brassica rapa XM 009106267
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 Raphanus sativus XM 018591382
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and were run on MEGA 7 and it has fallen in 

the clade 1 out of 2 (figure 3.5). It formed a 

sister clade withgene XM 013882389 with 

strong bootstrap of Brassica napus. It 

consists of aarF protein domain which 

includes mitochondrial and chaperonin 

proteins. It is predicted that genes are 

involved in activation of photosynthesis and 

enhance the resistance activity of plants 

against microorganisms. 

 

Figure 3.5: Phylogenetic analysis of Brassica napus gene 

106440663 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported.  

 

The upregulated 106353810 gene was 

worked out to be protein ENHANCED 

PSEUDOMONAS SUSCEPTIBILTY 1-

like. It was located on chromosome A7 of 

Brassica napus L. It was 2,179 nt long a 

protein coding gene with 2 exons. This gene 

had 1 family: Transferase with 1 protein 

domain.  

For the phylogenetic analysis of upregulated 

gene 106353810 BLAST was initially carried 

out and 22 different predicted plant 

sequences were selected. Fasta sequences 

were aligned and edited on analytical tool and 

was run on MEGA 7 and it has fallen in the 

sub-clade 1 out of 3 (figure 3.6). It formed a 

sister clade with gene XM 013793612 with 

strong bootstrap of Brassica napus. Its 

enzymatic proteins help to catalyze the 

biosynthetic chemical reactions in plants as 

well as in fungal isolates. It reduces the effect 

of mycological infections and accumulation 

of salicylic acid on the membranes during 

salinity. It is predicted that this analyzed 

upregulated gene is involved in biosynthetic 

pathways, helping to reduce the 

accumulation of toxic metals and salicylic 

acid during salt stress. 
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Figure 3.6: Phylogenetic analysis of Brassica napus gene 

106353810 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported.  

 

Another upregulated gene 106384994 was 

worked out to be protein uncharacterized 

acetyltransferase At3g50280-like. It was 

located on chromosome A3 of Brassica 

napus L. It was 2,065 nt long, a protein 

coding gene with 1 exon. This gene had 1 

family: Transferase with 1 protein domain.  

For the phylogenetic analysis, initially 

BLAST was carried out and 21 different 

predicted plant sequences were selected. 

Fasta sequences were aligned and edited on 

analytical tool and was run on MEGA 7 and 

it has fallen in the clade 1 out of 2 (figure 

3.7). It formed a sister clade with gene XM 

013824948 with strong bootstrap of Brassica 

napus. This gene worked out to be protein 

Enhanced Pseudomonas Susceptibility 1, 

having catalyzing enzymes performing same 

functions as mentioned in above gene 

106353810.  

 

 

Figure 3.7: Phylogenetic analysis of Brassica napus gene 

106384994 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported.  

Similarly, upregulated gene 106422599 was 

worked out to be protein uncharacterized 

acetyltransferase At3g50280-like. It was 

located on chromosome A2 of Brassica 

napus. It was 2,217 nt long, a protein coding 

gene with 2 exons. This gene had 1 family: 

Transferase with 1 protein domain.  
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For the phylogenetic analysis initially, 

BLAST was carried out and 19 different 

predicted plant sequences were selected. 

Fasta sequences were aligned and edited on 

analytical tools and were run on MEGA 7 and 

it has fallen in the clade 1 out of 2 (figure 

3.8). It formed a sister clade with gene XM 

009127455 with strong bootstrap of Brassica 

napus. This gene worked out to be protein 

Enhanced Pseudomonas Susceptibility 1, 

having catalyzing enzymes performing same 

functions as mentioned in above gene 

106353810.  

 

Figure 3.8: Phylogenetic analysis of Brassica napus gene 

106422599 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported. 

Lastly, the upregulated gene 106447447 was 

worked out to be protein Enhanced 

Pseudomonas Susceptibility 1-like. It was 

located on chromosome A4 of Brassica 

napus L. It was 2,191 nt long, a protein 

coding gene with 2 exons. This gene had 1 

family: Transferase with 1 protein domain. 

For the phylogenetic analysis, BLAST was 

carried out and 21 related plant sequences 

were selected. Fasta sequences were aligned 

and edited on analytical tools and were run on 

MEGA 7 and it has fallen in clade 1 out of 3 

(figure 3.9). It formed a sister clade with gene 

XM 013793612 with strong bootstrap of 

Brassica napus. This gene worked out to be 

protein Enhanced Pseudomonas 

Susceptibility 1, having catalyzing enzymes 

performing same functions as mentioned in 

above gene 106353810.  

 

Figure 3.9: Phylogenetic analysis of Brassica napus gene 

106447447 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported. 

The upregulated gene 106349247was worked 

out to be protein uncharacterized 

acetyltransferase At3g50280-like. It was 

located on chromosome A6 of Brassica 

napus L. It was 3,629 nt long a protein coding 
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gene with 4 exons. This gene had a 

CRS1_YhbY family with 1 domain.  

For the phylogenetic analysis, BLAST was 

carried out and 23 related plant sequences 

were selected. Fasta sequences were aligned 

and edited on analytical tools and were run on 

MEGA 7 and it has fallen in the clade 1 out 

of 4 (figure 3.10). It formed a sister clade 

with gene XM 013848100 with strong 

bootstrap of Brassica napus. It consists of 

CRM proteins which reside in the cell 

organelles i.e., mitochondria, chloroplast, 

nucleus, and cytoplasm of plant cells. It is 

involved in RNA binding, ribosomal 

assembly and intron splicing of RNA in 

chloroplast. It is predicted here that this gene 

is involved in assembly of small and large 

ribosomal subunits and in the synthesis of 

proteins. 

 

 

Figure 3.10: Phylogenetic analysis of Brassica napus gene 

106349247 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported.  

 

The upregulated gene 106401786 was 

worked out to be protein uncharacterized 

CRM domain-containing protein At3g25440, 

chloroplastic-like. It was located on 

chromosome A2 of Brassica napus L. It was 

3,859 nt long a protein coding gene with 4 

exons. This gene had a CRS1_YhbY family 

with 1 domain.  

For the phylogenetic analysis, BLAST was 

carried out and 21related plant sequences 

were selected. Fasta sequences were aligned 

and edited on analytical tools and were run on 

MEGA 7 and it has fallen in the clade 1 out 

of 3 (figure 3.11). It formed a sister clade 

with gene XM 013842370 with strong 

bootstrap of Brassica napus, having CRM 

protein domain residing in the cell organelles 

i.e., mitochondria, chloroplast, nucleus, and 

cytoplasm of plant cells. It is involved in 

RNA binding, ribosomal assembly and intron 

splicing of RNA in chloroplast. It is predicted 

here that this gene is involved in assembly of 

small and large ribosomal subunits and in the 

synthesis of proteins. 
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Figure 3.11: Phylogenetic analysis of Brassica napus gene 

106401786 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported.  

 

The upregulated gene 106366679 was 

worked out to be protein uncharacterized 

CRM domain-containing protein At3g25440, 

chloroplastic-like. It is located on 

chromosome A7 of Brassica napus L. This 

gene had 3 families: CRS1_YhbY, NikR_C 

and DASH_Spc19 consisting of 1 protein 

domain each.  

For the phylogenetic analysis, BLAST was 

carried out and 22 different predicted plant 

sequences were selected. Fasta sequences 

were aligned and edited on analytical tools 

and was run on MEGA 7 and it has fallen in 

the clade 1 out of 2 (figure 3.12). It formed a 

sister clade withgene XM 009104164 with 

strong bootstrap of Brassica napus. It 

consists of several protein families which are 

involved in ribosomal assembly, helps in the 

regulation and uptake of heavy metals during 

salt stress. It is specifically involved in cell 

division and chromosomal segregation. 

Accordingly, its sister clad is expected to be 

involved in metallic binding during salinity, 

cell division, chromosomal segregation, and 

protein binding.  

 

Figure 3.12: Phylogenetic analysis of Brassica napus 

gene 106366679 with respect to other genes. Tree 

inferred maximum likelihood. The numbers against the 

branches indicate the percentage (>50%) at which the 

branch supported in 1000 bootstrap replications. 

Genebank accession numbers are given at the end of 

species name. Highlighted taxa indicated the species 

to be reported.  

 

The downregulated gene 106420779was 

worked out to be Nematode resistance 

protein-like HSPRO2. It was located on 

chromosome C3 of Brassica napus L. It was 
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1,896 nt long a protein coding gene with 1 

exon. This gene had 2 families: Hs1pro-1_C 

and Hs1pro-1_N with 1 protein domain each. 

For the phylogenetic analysis, BLAST was 

carried out and 19 related plant sequences 

were selected. Fasta sequences were aligned 

and edited on analytical tools and was run on 

MEGA 7 and it has fallen in the clade 1 out 

of 2 (figure 3.13). It formed a sister clade 

with gene XM 013879102 with strong 

bootstrap of Brassica napus. It consists of 

nematode resistance proteins which provide 

resistance against nematodes and also confer 

the biotic and abiotic stresses. It is predicted 

here this downregulated gene is involved in 

resistance mechanism against biotic and 

abiotic stress and microbial attack on plants. 

 

Figure 3.13: Phylogenetic analysis of Brassica napus gene 

106420779 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported. 

The downregulated gene 106357317 was 

worked out to be Ethylene-responsive 

transcription factor ERF018. It was located 

on chromosome A7 of Brassica napus L. It 

was 1,196 nt long a protein coding gene with 

1 exon. This gene had 1 family: AP2 with 1 

protein domain.  

For the phylogenetic analysis, BLAST was 

carried out and 21 related plant sequences 

were selected. Fasta sequences were aligned 

and edited on analytical tools and were run on 

MEGA 7 and it has fallen in the clade 1 out 

of 2 (figure 3.14). It formed a sister clade 

with gene XM 013796997 with strong 

bootstrap of Brassica napus. It consists of an 

Ethylene-responsive transcription factor that 

helps to induce the defense mechanism of 

ethylene. It regulates the expression of genes 

under salinity and against pathogenic attack. 

It is predicted that this downregulated gene is 

involved in inducing the pathogenesis-related 

genes to combat the pathogenic attack and to 

activate the expression of genes by enhancing 

the ethylene response in plants during stress.  

 

Figure 3.14: Phylogenetic analysis of Brassica napus gene 

106357317 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 
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accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported. 

Another downregulated gene 106397199 was 

worked out to be Ethylene-responsive 

transcription factor ERF104-like. It was 

located on chromosome C7 of Brassica 

napus L. It was 1,439 nt long a protein coding 

gene with 1 exon. This gene had 1 family: 

AP2with 1 protein domain. 

For the phylogenetic analysis, BLAST was 

carried out and 23 related plant sequences 

were selected. Fasta sequences were aligned 

and edited on analytical tools and were run on 

MEGA 7 and it has fallen in the clade 1 out 

of 2 (figure 3.15). It formed a sister clade 

with gene XM 013837776 with strong 

bootstrap of Brassica napus. It consists of 

Ethylene-responsive transcription factor 

helps to induce the defense mechanism of 

ethylene. It regulates the expression of genes 

under salinity and against pathogenic attack 

by. It is predicted that this downregulated 

gene is involved in activation of the 

expression of genes by enhancing the 

ethylene response in plants during stress. 

 

Figure 3.15: Phylogenetic analysis of Brassica napus gene 

106397119 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported. 

The downregulated gene 106379918 was 

worked out to be Dehydration-responsive 

element-binding protein 1F. It was located on 

chromosome A8 of Brassica napus L. It was 

1,179 nt long a protein coding gene with 1 

exon. This gene had 1 family: AP2with 1 

protein domain.  

For the phylogenetic analysis, BLAST was 

carried out and 22 related plant sequences 

were selected. Fasta sequences were aligned 

and edited on analytical tools and were run on 

MEGA 7 and it has fallen in the clade 1 out 

of 3(figure 3.16). It formed a sister clade with 

gene XM 013819765 with strong bootstrap of 

Brassica napus. It consists of Dehydration-

responsive element-binding proteins which 

are said to be involved in regulating the 

development of seed coat, specifying floral 

and vegetative organs of plants and 

separating the identified structures of 

meristems. It is predicted that this 

downregulated gene is involved in the 

differentiation of parts of plant body and 

enhances the development of plant parts. 
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Figure 3.16: Phylogenetic analysis of Brassica napus gene 

106397198 with respect to other genes. Tree inferred 

maximum likelihood. The numbers against the branches 

indicate the percentage (>50%) at which the branch 

supported in 1000 bootstrap replications. Genebank 

accession numbers are given at the end of species name. 

Highlighted taxa indicated the species to be reported.

 

 

 

 

DISCUSSION 

The growing stage of plants under salinity 

stress affected seed at germination stage, 

developing stage of seedlings, vegetative and 

floral developmental stage and even fruiting 

stage of plants. This abiotic salinity stress 

ultimately declined crop production. Canola 

was the most well-known salt tolerant crop 

among others (Wang et al., 2009). 

In this current review, treated canola plants 

were subjected to salinity resistant 

parameters and selected upregulated and 

downregulated genes were studied 

molecularly, functionally, metabolically, and 

physiologically. These genes and their 

protein families were predicted which 

possibly be engaged in regulating plant 

adaptation mechanisms and tolerance to 

salinity stress. In the same way Gupta and 

Huang, 2014 studied food crops like wheat, 

barley, rice, maize etc. under salinity stress. 

They reviewed ion uptake and transport, 

harmonic modulation, activation or 

deactivation of enzymes and synthesis of 

amines during stress to tolerate salt.  

In the selected upregulated gene, gene ABC1 

was a residue in the form of novel 

chaperonins and functions diplomatically in 

mitochondria, it also suppressed a 

cytochrome b complex during mRNA 

translation and reviewed previously (Poon et 
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al., 2000; Macinga et al., 1998; Chehade et 

al., 2013) and according to the phylogenetic 

analysis it is important for e- transport in bc 

1 complex as a cofactor as concluded in the 

review of Bousquet et al., 1991. WaaY 

family was in the waa locus of bacterial strain 

of E. coli, which consisted of bacterial 

lipopolysaccharide; WaaY also acted as an 

enzyme which played an important role in 

phosphorylation of HepII in plants (Yethon et 

al., 1998). Phylogenetically it is predicted 

that Gene APH and its family consisted of 

kinases like fructosamine, homoserine and 

protein kinases having bacterial antibiotic 

resistance, which specifically acted to 

suppress the effect of accumulated Reactive 

Oxygen Species (Trower and Clark, 1998). 

Furthermore, Pkinase family was found in 

Eukaryotes like plants, Pkinase was an 

enzymatic protein family which shared 

common catalytic core consisting of serine 

and tyrosine kinases (Hanks, 2003). NikR_C 

family contains NikR DNA binding 

transcription factor that helped to bind and 

regulate nickel uptake during saline stress 

(Schreiter et al., 2003) and DASH_Spc19 

family consisted of DASH complex which 

contained a component; Spc19 specifically 

involved in thorough cell division. It also 

acted as a microtubule-binding subcomplex, 

which was essential for chromosome 

segregation, performed specific role in cell 

division for spindle and kinetochore integrity 

(Janke et al., 2002; Li et al., 2002). 

In downregulated genes a family P450s 

ishaem-thiolateproteinic which was involved 

in the degradation of oxidative toxins and 

many other environmental mutagens of 

plants. They enzymatically catalyzed 

oxidation of non-activated hydrocarbons at 

specific optimal temperatures. Its domains 

were involved in biosynthesis of antibiotics 

and activated proteomic activity also 

reviewed previously by Munro et al., 2007; 

McLean et al., 2005; Nguyen et al., 2010.  

According to the review of a current study, 

the CRM-domain protein was involved in the 

mitochondrial splicing introns, which was 

ultimately very crucial for growth and stress 

responses of plants; and, for all stress 

reducing mitochondrial functions. However, 

the role of many CRM-domain proteins was 

still unknown which were said to be doing 

splicing of introns and rRNA processing in 

chloroplasts or mitochondria and their role in 

the growth, development, and stress 

responses of plants. Lee et al., 2019 reported 

its role in splicing of RNA transcripts and its 

promotional role in cis and trans-splicing in 

cellular poraganlles of plants. 
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CONCLUSION 

 

Today’s world has declared that Brassica 

napus is certainly the most salt tolerant 

family among the food crops. These results 

showed the most capable genes are involved 

in reducing the salt tolerance efficiently and 

some genes worked out to improve salt stress 

tolerance capacity of plants by the regulated 

expressions of genes. 
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