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Abstract- Railway transportation plays an essential role in 

modern transportation infrastructure that requires the utmost 

safety and reliability. One of the significant concerns in railway 

management is the precise detection and timely repair of track 

surface defects, as these anomalies can lead to derailments, 

incidents, and disruptions in railway operations. Traditional 

inspection methods often rely on human expertise, which is 

susceptible to errors and time-consuming. In recent years, a 

growing interest has emerged in employing deep learning (DL) 

methods to automate the recognition and classification of faults 

in railway tracks. This paper aims to enhance the existing 

knowledge of this field by utilizing a convolutional neural 

network (CNN) based transfer learning model, DenseNet169, 

which can classify railway track images into defective and non-

defective classes. In defective class, this research focuses on four 

defects, particularly: corrugation, flaking, shelling, and squats. In 

addition, data preprocessing and data augmentation techniques 

are also applied to overcome the challenge of class imbalance. 

The DenseNet169 results yield in high levels of recall, precision, 

F1-score, reaching cumulative accuracy of 97%. The developed 

system can serve as a complementary confirmation mechanism to 

reduce the likelihood of errors and improve the accuracy of 

surface fault detection in railway tracks. 

 

Index Terms- Automated Machine Learning, Deep Neural Networks, 

Deep transfer learning, Densenet169, Rail Surface Defects. 

I. INTRODUCTION 

n many developing countries, including Pakistan, the railway 

network is a crucial mode of transportation as it contributes to 

their economic development by facilitating trade and commerce 

across various regions. However, railway companies worldwide 

face various challenges in maintaining high productivity levels in 

today's competitive and rapidly expanding global market [1]. To 

achieve optimal productivity, companies require maximum 

availability of assets, and maintenance remains a complex issue 

in ensuring such availability. Each year, billions of euros are 

spent on maintenance to meet objectives. Despite this, the costs 

continue to rise due to the intricate nature of inspections required 

to detect multiple defects on rail systems, making it challenging. 

Typical faults in railway tracks are surface faults that occur due 

to the repetitive passage of railway wagons over components or 

the impact of broken wheels, causing fatigue [2]–[4]. 

Surface defects' identification is necessary to maintain the safety 

and efficiency of railway tracks. However, this task is time-

consuming and expensive because it needs regular inspections by 

qualified professionals operating specialized tools. Moreover, the 

traditional approach of visual assessments may not be adequate 

to detect all sorts of surface irregularities, as they may be 

imperceptible to humans [2]. 

Railway companies are analyzing the usage of advanced 

technologies such as Machine Learning (ML) to automate the 

inspection and maintenance procedures in order to overcome the 

challenges. These technologies can assist in detecting surface 

abnormalities with greater accuracy and efficiency [5], thus 

lessening maintenance time and cost. Moreover, ML can also 

facilitate predictive maintenance strategies that determine 

possible defects before they cause severe damage to rail 

infrastructure. Therefore, to acquire a more precise recognition of 

surface faults of the railroads, this paper proposes a deep transfer 

learning model, DenseNet169, to categorize railway track images 

effectively into five classes: corrugation, flaking, shelling, squats 

and non-defective, as illustrated in Fig. 1. 

Fig 1. Types of classes used in this research 

 

In this research, the dataset used for classification underwent data 

augmentation techniques such as scaling or flipping, to improve 

the accuracy of the results. Moreover, to address the issue of 

class imbalance, pre-trained weights have been assigned to these 

classes, which has affected the duration of the training process. 

To expedite the training process and achieve faster convergence, 

DenseNet169 model has been employed in this study, along with 

some fine and hyper-parameter tuning. This iterative process 

helped optimize the model's performance and find the optimal set 

of hyperparameters for achieving the best results. 

The article is structured into five sections. Section 2 and Section 

3 describe the related work on detection methods of railway track 

faults and provide details of the methodology used, including 
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used dataset, fine-tuning methods, hyper-parameters, evaluation 

metrics, and transfer learning model. Section 4 presents the 

proposed approach's results and validation, while Section 5 

includes the conclusion and future work. 

II. LITERATURE REVIEW 

In the last few years, numerous conventional non-destructive 

approaches, such as an eddy current and ultrasonic methods, 

were applied to discover surface damages. But these existing 

procedures were an exceptional challenge, which involved 

reliability and system budget. Therefore, automatic machine 

learning-based techniques were examined on comparatively 

uncomplicated international data from a predictive modeling 

contest to explore track geometry fault [6]. Thus, these 

techniques were implemented to predict the level of the track 

imperfections by operating the inertial navigation system and 

laser displacement sensor to get dynamic orbital acceleration and 

displacement data, respectively, but later, the imbalance wheel 

and the transmission system influenced that data and generated 

some abnormal values [7]. In addition, other kinds of 

irregularities related to lateral, longitudinal level, alignment, and 

cross-level were detected through roll bogie frame accelerations 

or car-body vibrations by employing multiple classifiers based on 

decision tree (DT), linear support vector machine (SVM), and 

Gaussian SVM algorithms to determine the location of the faults 

[6], [7]. Though, the researchers did not focus on acquiring the 

optimized parameters from the used algorithm, and due to the 

small number of training data clusters, the effectiveness of the 

utilized approach lessened [8]. On top of that, the work merely 

concentrated on straight track sections and observed irregularities 

within the 3–25m wavelength range [9]. Furthermore, vertical 

track abnormality is another complex and crucial evaluation of 

the railway’s health. Consequently, multi-level evidential 

reasoning (M-ER) rule model was suggested, which consisted of 

the optimized referential evidence matrix and fusion 

specifications to develop a two-level evidence fusion mechanism 

to acquire samplings per vibration signal fused with their closest 

neighboring recorded samples received by KNN technique and 

integrated by the ER rule [10]. For surface faults, a deep 

multimodal rail inspection system (DM-RIS) was established, 

which had a spatially constrained Gaussian mixture model based 

on Markov random field (MRF) for segmentation and Faster-

RCNN for objective location in a parallel structure [11]. 

Similarly, a fusion of two DL models was constructed, which 

included a contrast adjustment to the actual rail image, and then 

finding the location to reduce the overall features in order to 

provide those to Support Vector Machines (SVM) algorithm and 

consume less time to detect damages [12]. Fasteners are essential 

components to keep rails in an affixed position, and their state 

requires steady checking to guarantee safe transportation. Due to 

this reason, several image processing technologies and DL 

networks have been presented to detect fastener position and 

recognition simultaneously [13]–[15]. Hence, traditional image 

processing and latent Dirichlet allocation methods have been 

utilized to identify the location [11], [12]. For recognition, 

Dense-SIFT features, Faster-RCNN, and Support Vector Data 

Description (SVDD) have been employed, whereas, for fastener 

form, conditional random fields and Bayesian hierarchical model 

have been used [13]–[15]. 

In Pakistan, the current monitoring system for railway 

infrastructure relies heavily on manual visual inspection, which 

has already been deemed inaccurate and time-consuming [16], 

[17]. However, the adoption of advanced technologies like DL 

can help overcome these challenges by facilitating more precise 

and efficient detection and maintenance of surface defects. This, 

in turn, can lead to a reduction in the time and cost required for 

maintenance and enable predictive maintenance to prevent 

considerable damage to the rail infrastructure. 

III. METHODOLOGY 

In this research, a transfer learning approach is adopted using a 

DenseNet169 model based on CNN as the base model. The 

presented methodology involves specifying a new upper layer as 

a fine-tuning model, and the transfer learning pipeline follows a 

standard sequence of feature extraction from the source dataset, 

followed by optimizing the model for the target dataset. The 

following subsections will deliver further details. 

A. Data Collection and Data Pre-processing 

The dataset employed in this study was collected from Kotri 

railway junction station and is split into training and test sets 

with an 80:20 ratio. The distribution of the dataset in each 

category is provided in Table 1. 

Table 1 Original Dataset of the Railway Track. 

S. No. Classes Training Set Test Set 

1.  Corrugation 320 80 

2.  Flaking 320 80 

3.  Non-Defective 320 80 

4.  Shelling 320 80 

5.  Squats 320 80 

Total 1600 400 

B. Data Augmentation 

A pre-processing approach that applies various transformations 

to existing images in a dataset, aimed to expand dataset size and 

diversity, combat overfitting, and enhance the DL models' 

performance that requires significant training data, is called data 

augmentation [18]. This process aims to generate additional 

training examples that are similar but not identical to the original 

images in the dataset to help the model understand more robust 

and generalizable segments that apply to a wide range of input 

images. Therefore, data augmentation techniques have been 

utilized in this research using a built-in function, Image Data 

Generator, to improve the learnability of the dataset. The used 

techniques are shown in Table 2. 

Table 2 Utilized Data Augmentation Techniques. 

Data Augmentation Techniques Values 

Rescale  1./255 

Shear range  0.2 

Zoom range  0.2 

Horizontal flip True or 0.5 

C. Class Imbalance 

Class imbalance can occur due to various reasons such as 

sampling bias, data collection bias, or distribution of data [19]. 
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Although the class weights are not used in this analysis 

explicitly, the categorical cross-entropy loss function is still 

applied during model training. This function is commonly used 

for multi-class classification problems and implicitly accounts 

for class distribution in the dataset. This function penalizes the 

model for making incorrect predictions and aids to balance the 

contribution of each class to the overall loss. 

D. Transfer Learning 

Transfer learning has been utilized in different fields to enhance 

the precision of classification, tackle overfitting issues, and boost 

the model's ability to generalize [20]. In this study, the 

application of transfer learning involves taking a pre-trained 

model that has learned a large set of features from a source 

dataset, and then adapting it to a target dataset because it can 

serve as a launching pad for building a new model customized to 

perform a distinct task from the original model.  

E. DenseNet169 

DenseNet169 was chosen for its relatively low parameter count 

despite having a depth of 169 layers, and its ability to effectively 

handle the vanishing gradient problem, particularly when 

working with limited datasets. To tackle these problems, the 

model employs a densely connected architecture that facilitates 

the reuse of features from preceding layers, allowing for more 

direct information flow between layers and promoting faster 

convergence [21]. In addition, it uses bottleneck and MBConv 

blocks to reduce parameters without sacrificing capacity. The 

bottleneck blocks compress input feature maps, while the 

MBConv blocks leverage depth-wise separable convolutions and 

squeeze-and-excitation blocks to decrease computational costs 

[22]. The model's combination of feature reuse and gradient flow 

promotes faster convergence and higher accuracy, surpassing 

traditional CNN architectures and resulting in an exceptional 

performance on various image classification benchmarks, and 

validating its effectiveness in solving complex real-world 

problems. The network architecture presented in Fig. 2 was used 

in this research, and the pre-trained model was modified by 

adding a Flatten layer and a Dropout layer at the top. 

Fig. 2. Illustration of an Implemented Neural Network with Two Hidden 

Layers Fine Tuning 

f. Fine Tuning 

Fine-tuning a model involves freezing the upper layers and 

extracting the fundamental parameters [21]. In CNNs, the higher 

layers typically learn low-level features and can be applied to 

several types of images. As the railway track dataset used to train 

the model becomes diverse, it acquires distinct characteristics, 

which is the objective of fine-tuning to adapt unique attributes 

that better suit the track dataset. The parameters’ details of the 

used model are given in Table 3. 

Table 3 Number of parameters in proposed DenseNet169 model 

Total params Trainable params Non-trainable params 

13,175,365 13,016,965 158,400 

g. Hyperparameter Tuning 

Hyperparameters refer to the settings that are specified prior to 

the commencement of the model training process and cannot be 

determined from the data itself, unlike model parameters which 

are learned through the training process [23]. Although pre-

trained models have already undergone training with specific 

hyperparameters, it is important to recognize that these 

hyperparameters are fundamental to the model's performance. 

During fine-tuning, adjusting hyperparameters may be necessary 

to achieve optimal results [24]. The applied model is pre-trained 

and does not explicitly specify hyperparameters. However, the 

detail of the utilized hyperparameters is provided in  Table 4. 

Table 4 Utilized Hyperparameters 

Hyperparameters Values 

Learning/Training rate 0.001 

Training batch size 32 

Training iterations 35 

Patience 10 

By tuning the above hyperparameters, we can optimize the 

model’s performance by reducing overfitting, and training time.  

h. Evaluation or Performance Metrics 

The assessment of the model's performance during training and 

testing is crucially dependent on evaluation metrics [25] as it 

provides a quantitative measure of how competently the model 

can solve a given task. Furthermore, we can impartially assess 

the performance of the suggested model by using these metrics to 

compare it with other models or benchmarks [26]–[28] so that 

later decisions can be made about its suitability for a specific task 

and pinpoint improvement areas. The present study employs a 

few evaluation metrics, such as precision, accuracy, recall and 

f1-score, to gauge the proposed model’s performance. 

IV. RESULTS & VALIDATION 

Experiments were conducted on the DenseNet169 model, which 

was selected due to its small size and robust performance, to 

observe the implementation of the proposed strategy. To achieve 

the desired results, key parameters were modified including stack 

size and learning rate. Specifically, the stack size was increased 

to enhance the model's capacity to capture complex patterns and 

the learning rate was fine-tuned periodically to improve the 

model's responsiveness to changes in the data. The optimizer 

"Adam," having a default value of a learning rate of 0.001, was 
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used to optimize the model's performance and constrain the 

binary cross-entropy loss function. The top layer of the model 

was modified, as this has been shown to have a significant 

impact on the model's performance. 

The evaluation of the proposed strategy employed rigorous 

evaluation metrics to measure the model's performance, 

including accuracy, precision, recall, and F1-score. Through 

experimentation, it was found that the modified DenseNet169 

achieved significantly better results than the baseline model. Fig. 

3 shows the implemented model’s confusion matrix, while Table 

4 illustrates the correlation between the model’s iterations and 

the bias-variance tradeoff. The training vs. validation accuracy 

and loss curves are depicted in Figs. 4 and 5, respectively. 

Fig. 3. Confusion Matrix of the DenseNet169 Model  

Table 4. Epochs vs. Bias-Variance Tradeoff 

Epochs Bias-Variance Tradeoff 

29 Under-fitting 

50 Optimal or Appropriate-fitting 

51 Over-fitting 

 

Fig. 4. Accuracy Graph of DenseNet 169 

Fig. 5. Loss Graph of DenseNet169 

From the above results, it has been observed that despite some 

fluctuations during training, the DenseNet-169 model achieved 

accurate classification results even with an imbalanced dataset, 

highlighting DL’s potential to improve fault detection. These 

findings reinforce the idea that DL can complement conventional 

inspection methods to reduce errors in fault detection on railway 

tracks. The comparison results of precision, recall, and f1-score 

for each class, including non-defective and four types of surface 

faults, are showcased in Fig. 6. 

Fig. 6. Comparative results of Precision, Recall and F1-Score per Class 

The model validation using a random track image showcased 

reliable and accurate defect detection and categorization, as 

depicted in Fig. 7, affirming its value in enhancing railway safety 

and maintenance. 

Fig. 7. Detected Faults in Railway Track 

This model was also validated in a real-world scenario using a 

motorized track recording vehicle (TRV) device, as depicted in 

Fig. 8, developed by the National Center of Robotics and 

Automation (NCRA) at Mehran University of Engineering and 
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Technology, Jamshoro. These findings emphasize that DL 

techniques have immense potential to improve fault detection 

accuracy on railway track surfaces. 

Fig. 8. DenseNet169 Validation through Motorized Track Recording Vehicle  

V. CONCLUSIONS & FUTURE RECOMMENDATIONS 

In this research, we developed a system that utilizes a transfer 

learning model, DenseNet169, based on a CNN, to classify 

railway track images into defective and non-defective classes. 

This system further classifies defective images into four specific 

faults: corrugation, flaking, shelling, and squats. To overcome 

the class imbalance challenge, we implemented data 

preprocessing and data augmentation techniques, and during the 

training process, we optimized the model's performance through 

fine-tuning and hyperparameter adjustments to achieve faster 

convergence. 

The model was validated using images acquired from the Kotri 

railway junction station, Sindh, Pakistan, and conducted both 

simulated testing using input images and field testing using a 

motorized TRV device. The results demonstrated that the system 

was effective in specifying and categorizing surface defects on 

railway tracks, highlighting its potential to lead to a higher 

standard of maintenance and safer railway operations. 

Although the developed system provides a promising solution by 

achieving a remarkable classification accuracy of 97% even with 

imbalanced data, some limitations and challenges remain. The 

system's performance is highly dependent on the quality of input 

images, and the transfer learning model's effectiveness may vary 

based on the specific railway infrastructure. Therefore, future 

work could focus on improving the system's robustness to 

various environmental conditions and railway systems, 

expanding the dataset, detecting other faults, and incorporating 

other transfer learning models. 
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