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Abstract 

Post-traumatic stress disorder (PTSD) is a chronic neuropsychiatric illness caused by extremely 

painful and traumatic experiences. PTSD symptoms include mood disorders and impaired 

cognition. Sarsasapogenin (Sas) is a steroidal sapogenin with a neuroprotective profile. The current 

study aimed to evaluate the potential of Sas in PTSD-induced anxiety and depression using single 

prolonged stress (SPS) model and associated changes in adenosine, hypoxanthine, and inosine 

levels in frontal cortex, hippocampus, and Striatum. After exposure to SPS, selected groups of 

mice were treated daily with sarsasapogenin (Sas) at doses of 20, 40, and 60 mg/kg or normal 

saline or fluoxetine for 7 days and were evaluated for depression and anxiety-like behavior using 

the tail suspension test (TST) and marble burying test (MBT), respectively. Following behavioral 

tests, the post-mortem Str, frontal cortex, and hippocampus were screened for changes in 

adenosine, hypoxanthine, and inosine levels. Sas treatment significantly ameliorated depression 

and anxiety-like behaviors in the SPS group. Sas restored adenosine levels in the frontal cortex 

and striatum at 40 and 60 mg/kg doses. In addition, inosine levels were disrupted in the frontal 

cortex and hippocampus which were restored by Sas at all doses in the frontal cortex and at 60 

mg/kg in the hippocampus. However, no significant changes in hypoxanthine levels were observed 

in the frontal cortex, hippocampus, or striatum. The attenuation of behavioral despair and anxious 

behavior by Sas may involve the modulation of adenosinergic pathways. Taken together, these 

findings imply that Sas is a potential candidate for the treatment of PTSD-induced behavioral 

despair.  
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1 Introduction 

 PTSD is a mental disorder induced by traumatic events that threaten physical integrity. The key 

symptoms associated with PTSD include hyperarousal, intrusive memories, emotional distress, 

and avoidance [1]. During the COVID pandemic, the estimated prevalence of collective PTSD was 

17.5% in the global population [2]. A more recent survey showed that the prevalence of PTSD 

among journalists in Pakistan's Khyber Pakhtunkhwa area is as high as 48.6% [3]. Anxiety and 

depression are the major comorbidities associated with PTSD [4]. These symptoms are 

accompanied by dysregulation of numerous neurotransmitter systems, neuromodulators and 

functional or structural abnormalities in certain brain areas like the hippocampus, frontal cortex, 

Striatum, and amygdala [5-7]. The frontal cortex is involved in executive function and regulates 

emotional components by exerting inhibitory control on the amygdala, which is the threat 

processing center. In PTSD, inhibitory control of the frontal cortex is diminished in the amygdala, 

resulting in a heightened fear response.  Furthermore, the prefrontal cortex influences striatal 

activity to regulate motivated, habitual, and goal-directed behaviors [8, 9]. Notably, in patients 

with PTSD, the decline in inhibitory tone involves increased striatal activity in the response 

inhibition test, which is complemented by reduced striatal activity for responsiveness and reward 

processing [8, 10]. Moreover, the hippocampal volume is decreased in patients diagnosed with 

PTSD, which is associated with impaired cognition involving dopaminergic modulation [11]. 

Hippocampus is responsible for conscious memory processing and context-encoding during fear 

conditioning [12]. Adenosine modulates homeostasis and serves as a neuromodulator in the brain, 

as it exerts neuroprotective as well as neurodegenerative effects [13]. Adenosine levels are 

markedly increased during brain insults due to increased consumption of ATP to maintain cell 

viability, which causes an abnormally high adenosine levels [14, 15]. Adenosine and its 

metabolites play significant role in mood regulation and cognitive impairment [16, 17]. Owing to  

imbalance between multiple brain regions and neurochemical disruption in distinct brain regions, 

PTSD is presented with wide array of symptoms and comorbidities [18], which are addressed via  

psychotherapy and pharmacotherapy [19]. Although serotonin reuptake inhibitors (SSRIs) are 

used to treat PTSD, these drugs have tolerability issues [20]. Both treatment approaches are 

associated with 60% relapse rate [21, 22]. Therefore, there is a global surge for novel 

pharmacological entities with increase tolerability. 
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PTSD has been characterized almost purely in psychological terms, with only a few 

psychophysiological observations in biological literature. While psychological studies of PTSD 

are vital, they should be supplemented with research into the neurological and biochemical 

mechanisms implicated in PTSD for better understanding of the pathology and treatment targets. 

Recent research implies the promising role of adenosine in behavioral despair and anxiety and 

sleep-induction [17, 23], and epilepsy [24]. Moreover, the adenosine system can block discharge 

from the amygdala and locus coeruleus and has neuroprotective effects [25]. Adenosinergic 

receptor modulators have been scientifically documented to alleviate anxiety and obsessive 

compulsive disorders by targeting selected adenosine receptors like A1 or A2 [26-28]. Adenosine 

modulators have shown anxiolytic effect in specific marble burying models via its interaction with 

selected adenosine receptors [29-31]. Additionally A1 and A2A subtypes, conversely modulate 

inhibitory and excitatory tone simultaneously maintaining balance [32, 33]. Drastic decline in 

adenosine signaling results in multiple neuropsychiatric illnesses and neurodegenerative diseases 

including anxiety and depression [17]. Structural and functional abnormalities of A2 receptors 

have been implicated in development of major depression [34]. Stress has been found to be the 

one of the most influencers that leads to over production and elevation of adenosine signaling in 

brain that leads to synaptic plasticity [35]. Upregulation of A2AR in different brain regions with 

associated synaptic plasticity has been the hall mark of depression and many other 

neuropsychiatric illnesses [36]. In murine model, chronic stress has been associated with altered 

adenosine levels and changes in A2A receptor density across the mesolimbic system [37]. 

Adenosine altered restoration by adenosine blockers has been reported to reverse chronic stress 

induced changes in hippocampus structures and functions and with restoration of corticosterone 

levels [17]. 

(Sas) is a steroidal sapogenin isolated from the rhizome of the Chinese herb, Anemarrhena 

asphodeloides Bunge. It has been found to improve cognition in aged rats by boosting the 

muscarinic receptor density  [38]. Sas also has antidepressant-like characteristics, since it 

decreased immobility time in the FST [39]. Furthermore, Sas has been shown to reduce diabetes-

induced memory loss, reduce neuroinflammation through the downregulation of the PAR-1 

receptor [40] and provide neuroprotection by reducing Aβ peptide overproduction [41]. Despite 

having a strong anti-inflammatory profile and neuroprotective effects, Sas has not been 
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investigated for its pharmacological potential in PTSD; therefore, this study will investigate this 

possibility using a murine model of PTSD. 

2 Material and methods  

2.1 Animals  

Male BALB/c mice (22-26 g) were procured from the National Institute of Health; Islamabad were 

used in the present studies. Mice were acclimatized to the experimental room one week prior to 

the experimentation and were kept in a controlled humidity (55 ± 15%), 12-12-hour dark/light 

cycle, and temperature (25 C) and were provided with water and food without any restriction. All 

the experimental protocols were approved by the Ethical Care Committee at the COMSATS 

University Islamabad, Abbottabad campus under registration number PHM.Eth/CS-M01-019-

2901. 

2.2 Materials  

Sas (≥98% purity, CAS number 126-19-2) was procured from Haihang Industry Co Ltd., China. 

Fluoxetine was purchased from Aries Pharma, Peshawar. Adenosine, hypoxanthine, and inosine 

Acetonitrile, citrate buffer was procured from Sigma Aldrich USA. 

2.2.1 Induction of SPS  

In SPS, mice were subjected to immobilization for 2 hours in restrain tubes followed by 20 minutes 

forced swimming in clear glass tank (46 cm × 20 cm, 25±1 °C water temperature) filled with water 

up to two third of its height. Following that mice were recuperated for 15 minutes. Finally, they 

were subjected to ether vapors until they were unconscious. After recovering from 

unconsciousness, mice were returned to their home cages and left uninterrupted for 7 days to 

develop PTSD symptoms [42]. 

2.3 Experimental Protocol  

After exposure to SPS, mice were randomly sorted into 6 groups. Group 1, (non-stressed +saline 

10ml/kg), (Group 2, SPS+ saline), Group 3 (SPS+ Sas 20mg/kg), Group 4 (SPS+ Sas 40mg/kg), 

group 5 (SPS+ Sas 60mg/kg), group 6 (SPS + fluoxetine 10mg/kg). Sas and Fluoxetine were 

administered via IP route after exposure to SPS for 7 days. Following 7 days of treatment, 

behavioral tests were performed. 

2.4 Behavioral Tests 
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2.4.1 TST 

All behavioral tests were performed between 9.00 AM to 12:00PM. TST is widely employed to 

evaluate depression. The mouse's tail was firmly fastened to a wooden rod 50 cm above the 

surface in the TST chamber.  To shield mice from visual distraction, a plexiglass enclosure was 

employed. The mice remained suspended for 5 minutes and their immobility time was taped using 

a video camera [43].Video was later analyzed by a trained blind observer. 

2.4.2 Marble Burying Test 

Propylene cages containing 5cm deep unscented, fresh mouse bedding were used. The surface of 

bedding was uniformly levelled by pressing another cage. It has the extra benefit of leaving a 

pattern of lines on the bedding for marble placement. Following this 20 glass toy marbles (5.2 g in 

weight, 5 mm diameter,) were placed gently on the bedding surface at equal distance from each 

other in 5 rows of 4 marbles. The marbles were thoroughly washed and cleaned with 70% alcohol 

to remove olfactory signatures. Mice were withdrawn from cages after 30 minutes of testing, and 

at least half to full covered of marbles  in bedding were counted [44, 45]. 

2.4.3 Fecal Pellet output (FPO) 

 Rodents along with other species exhibit a stress response through alterations in colonic motor 

activity. In both humans and animals, increased fecal output is a reliable indicator of autonomic 

system alteration of colonic motility. The mice were kept in wooden chamber individually for 10 

minutes and fecal pellet output was quantified and compared between groups [46]. 

2.5 Quantification of Adenosine, inosine, and Hypoxanthine  

After completion of behavioral experiment, animals were euthanized and whole brains were 

extracted. Frontal cortex, hippocampus and Striatum were isolated from whole brains and were 

stored in Eppendorf tubes at -80 C to avoid degradation of adenosine and its metabolites. The 

isolated brain areas were then homogenized at 5000 rpm. in 0.2 percent perchloric acid with a 

Teflon glass homogenizer (Ultra-Turax®T-50). Following that, the samples were centrifuged at 

4°C for 20 minutes at 12000 rpm (DLAB Scientific). 0.45 mm filter (CNW technologies) was used 

to filter the  supernatant  before being injected into an HPLC autosampler for analysis [47]. 

2.5.1 Chromatographic Conditions 

Adenosine, inosine and hypoxanthine were quantified by HPLC using Waters Alliance 2690 

separation module with an auto-sampler, UV detector, and  PDA (USA) following [48] method. 

A C18 column (250× 4.6 mm, 5µm particle size) (Waters X Select® HSS Ireland) was used and 
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the mobile phase was prepared using 0.01M monobasic sodium phosphate and acetonitrile (95:5, 

v/v).  Flow rate was.01/ml, temperature of the column was 35℃, and detection was carried out at 

260 nm with isocratic elution in phosphate buffer [48].  

2.5.2 Standard Preparation and Calibration Curve 

Stock solutions of adenosine, hypoxanthine and inosine standards having a concentration of 1.0 

mg/10ml were prepared.  Several dilutions of 100-500 ng/mL were prepared from each stock 

solution. The samples were placed in the auto-sampler and 20µL sample injection was adjusted in 

the software (Empower TM). The peak area (y) was plotted against the concentration (x), using 

linear regression analysis to obtain the calibration curve. Unknown concentrations of the 

adenosine, inosine and hypoxanthine were quantified by comparing the respective peak areas [48]. 

2.6 Statistics: 

Graph Pad Prism (version 8.2.1) was used to analyze the data and values were expressed as the 

mean ± SEM. Shapiro-Wilk test was applied on data for normal distribution. One-way ANOVA 

was applied with post-hoc Dunnett’s  test for analysis and p<0.05 was adopted as the threshold for 

significance. 

3 Results  

3.1 Effect of Sas on depression-like behavior in TST 

In TST, mice exposed to SPS exhibited a significant increase in immobility time when compared 

to the non-stressed animals showing depression like behavior. All 3 doses of Sas and fluoxetine 

reduced the immobility time (Fig 1), indicating the amelioration of depressive behavior. 
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Figure 1.  Effect of Sas or fluoxetine treatment on mouse behavioral despair induced by SPS in 

the FST. ### p<0.001 versus saline group, **p<0.01, ***p<0.001versus SPS group. 

3.2 Effect of Sas on Anxiety like behavior in MBT  

In MBT, the count of marbles buried by SPS group was significantly higher when compared to 

saline treated group which indicates anxiety in SPS exposed animals. Sas at highest dose and 

fluoxetine reduced the count of marbles buried in comparison with the SPS exposed group (Fig 2) 

hence indicating the anxiolytic effect.  
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Figure 2.  Effect of Sas or fluoxetine treatment on anxiety like behavior induced by SPS in the 

MBT. ### p<0.001 versus saline group, **p<0.01, ***p<0.001versus SPS group. 

3.3 Effect of Sas on Fecal Pellet Output  

No significant difference in fecal pellet output was observed among all groups, however, an 

increasing trend of FPO was observed in SPS group and a decline in FPO in fluoxetine and Sas 

groups. 
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.  

Figure 3:  Effect of Sas or fluoxetine treatment on FPO. ### p<0.001 versus saline group, **p<0.01, 

***p<0.001versus SPS group. 

3.4 Effect of Sas on changes in frontal cortical adenosine, inosine, and hypoxanthine levels 

induced by SPS. 

In SPS-exposed mice, adenosine levels were significantly increased in the frontal cortex which 

were significantly reduced by fluoxetine, and highest Sas dose (Fig 4A). Inosine levels were also 

increased in SPS exposed group which was attenuated by fluoxetine and Sas at all test doses (Fig 

4B). However, no significant difference was observed in hypoxanthine levels (Fig 4C). 

             



Journal of Xi’an Shiyou University, Natural Science Edition                                                                       ISSN: 1673-064X   

http://xisdxjxsu.asia                                        VOLUME 19 ISSUE 06 JUNE 2023                                                  403-424 
 

 

 

Figure 4. Effect of treatment of Sas or Fluoxetine changes in adenosine, inosine, and hypoxanthine 

(ng/mg of Wet Tissue) in the frontal cortex after SPS. Difference of significances ###p<0.001 vs 

Saline group, *p<0.01, **p<0.01, ***p<0.001 vs SPS group. 
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3.5 Effect of Sas on changes in hippocampal adenosine, inosine, and hypoxanthine levels 

induced by SPS. 

In SPS exposed mice no significant difference was observed in adenosine and hypoxanthine levels 

in SPS mice in contrast to saline treated groups (Fig 5A, Fig 5C). However, inosine levels were 

increased significantly in SPS exposed group in comparison with saline treated group which were 

attenuated by Fluoxetine and Sas at highest dose (Fig 5B). 
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Figure 5. Effect of treatment of Sas or Fluoxetine on changes in adenosine, inosine, and 

hypoxanthine (ng/mg of Wet Tissue) in the hippocampus after SPS. Difference of significances 

###p<0.001 vs Saline group, *p<0.01, **p<0.01, ***p<0.001 vs SPS group 

3.6 Effect of Sas on changes in striatal adenosine, inosine, and hypoxanthine levels induced 

by SPS. 

In SPS exposed mice, adenosine was significantly increased in striatum in contrast to saline treated 

groups which were restored by Fluoxetine and Sas at highest doses (Fig 6A). However, no 

remarkable difference was observed in inosine and hypoxanthine levels in SPS exposed group in 

comparison with saline group (Fig 6B, Fig 6C). 
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Figure.6 Effect of treatment of Sas or Fluoxetine treatment on changes in adenosine, inosine, and 

hypoxanthine (ng/mg of Wet Tissue) in the Str after SPS. Difference of significances ###p<0.001 

vs Saline group, *p<0.01, **p<0.01, ***p<0.001 vs SPS group. 

4 Discussion  

The current study was designed to evaluate the effects of Sas on depression and anxiety-like 

behavior in a mouse model of SPS-induced PTSD. Animal models are crucial for evaluating 

potential pharmacotherapeutic approaches for PTSD. The SPS model was used in this study to 
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assess the development of PTSD symptoms. The SPS model was chosen because it generates 

potential stress responses by means of different mechanisms, that is, immobilization for 

psychological stress, forced swim for physiological stress, and for pharmacological stress ether 

was used [49]. The goal of this protocol was to imitate the significant cortisol increase generated 

by exposure to traumatic experiences [50].  SPS is one of the most effective paradigms for inducing 

PTSD-related symptoms in rodents, including behavioral despair and anxiety [42].  

In the present study, the TST model was used to evaluate the antidepressant activity of Sas in 

PTSD. The TST is based on the finding that rodent when placed in an inescapable stressful 

condition, adopt an immobile posture after initial intended escape movements. The stressful 

situation in the TST includes the hemodynamic stress of being hung in an unpredictable manner 

by their tail [51]. The depressed mice will give up early and remain immobile for a longer period 

compared to non-depressed animals [52]. In our findings, immobility time was increased in the 

TST in mice exposed to SPS, which is an indicator of behavioral despair. These findings are 

consistent with previous findings [53], however, Sas was able to reduce the immobility time in 

SPS mice, like fluoxetine (positive control), indicating an antidepressant effect.  

Anxiety like behavior was evaluated using MBT. Rodents instinct to bury hostile sources of 

distress in their territory [54]. This distinctive behavior is normally directed toward detrimental 

and harmful objects such as unpleasant food, dead conspecifics [55] and small predators like 

scorpions [56], which are characterized as defensive behaviors that reveal the anxiety state in 

rodents [57]. In the present study, mice exposed to SPS had buried significantly higher number of 

marbles than the saline-treated group, indicating anxious behavior. Fluoxetine and Sas 

significantly lowered marbles burying after SPS exposure, suggesting an anxiolytic effect (Fig 2). 

In addition, FPO is associated with increased anxiety  [46], as it affects the brain gut axis [58].  

Increased fecal transit time and FPO are used as the indicators of the modulation of autonomic 

system in human as well as rodents [46]. However, no significant change was observed among the 

stressed and non-stressed groups, although the stressed group showed the highest mean FPO 

among all the groups (Fig3). 

Moreover, there was a significant increase in adenosine levels in Frontal cortex in SPS group when 

compared to saline group which was reversed by fluoxetine and SAS at the highest dose (Fig4 A), 

however, no significant difference in adenosine levels were observed in hippocampus and Striatum 

(Fig 5A, Fig 6A). Inosine levels were also raised in the frontal cortex and hippocampus in the SPS 
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group.  Fluoxetine and SAS reduced the inosine levels at all doses in frontal cortex (Fig 4B), and 

at highest dose in hippocampus (Fig 5B). In contrast, hypoxanthine levels were not altered in any 

of the brain regions (Fig 5C, Fig 6C, Fig 6D). Hence, the antidepressant and anxiolytic effects of 

Sas can be correlated with modulation of the adenosergic system.  

The association of the adenosergic system with mood disorders has primarily been established, 

employing adenosine and its analogs to cause depression-like behavioral effects in extensively 

used animal models of depression [59-61]. Thus, an upsurge in adenosine levels prolonged the 

immobilization time in rats presented with inescapable shocks and in the FST  [62, 63]. Adenosine 

exerts its actions by acting on the A1 and A2 receptors [17]. The expression of A1 and A2 receptors 

varies depending on physiological conditions, as it is evident that adenosine mainly acts on A1 

receptors under normal physiological conditions due to the high distribution and expression of A1 

receptors in the brain, suggesting its role in the maintenance of tone and homeostasis; however, 

A2ARs are expressed primarily during stress and are involved in fine tuning during some 

pathologies [35, 64, 65]. This difference in the expression of receptors may be attributed to various 

factors, such as alteration in neuronal firing pattern, relative position of adenosine discharge, and 

receptor distribution [17, 66-68]. Increased anhedonia, behavioral despair, and anxiety-like 

behavior were associated with A2AR overexpression in forebrain neurons in transgenic rats [69]. 

Hippocampal glutamatergic terminals in mice exhibit increased A2ARs, decreased synaptic 

plasticity, synaptic protein density, and depressive-like behavior under mild chronic stress [32, 

70]. Synaptic and behavioral alterations caused by chronic stress are mitigated by A2AR [70]. The 

selective A2A receptor antagonist caffeine attenuates depressive behavior in experimental animals, 

and DMPX augments the antidepressant effect of drugs such as agomelatine and tianeptine [17]. 

Caffeine has also been reported to attenuate the anxiety like behavior at low doses. Regular 

exercise exerts an anxiolytic effect by blocking the A2AR receptor [71].  Previous studies have 

shown that adenosine reduces serotonin release in synapses via the A1 receptor [72]  a key 

neurotransmitter that is involved in the pathophysiology of depression [2, 73], and anxiety [74] 

whereas the release of acetylcholine and glutamate is facilitated by the activation of A2A receptors 

whereas the GABAergic release is inhibited [75]. These findings suggest a positive correlation 

between increased adenosine levels and depression and anxiety-like behavior. Adenosine is 

converted into inosine by adenosine deaminase, which is further metabolized to hypoxanthine in 

the presence of purine nucleoside phosphorylase, then to xanthine, and finally to uric acid in the 
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presence of xanthine oxidase. Inosine is formed inside the cell by adenosine deamination in the 

presence of a high level of intracellular adenosine [76, 77]. Adenosine and inosine target the same 

nucleoside transporters [78]. Therefore, by blocking adenosine uptake, inosine can increase 

adenosine levels in extracellular spaces and exert indirect biological effects. It has been reported 

that inosine can directly bind to A1, A2A, and A3 receptors. Rodent A3 receptors appear to be 

more sensitive to the biological effects of inosine than are human A3 receptors  [64, 79, 80]. The 

activation of A3 receptors by inosine has an additional anti-inflammatory effect  [76]. However, 

when the inosine and hypoxanthine levels are abnormally high, they are ultimately metabolized to 

uric acid, which is responsible for the generation of hydrogen peroxide and potentially deleterious 

ROS. ROS are responsible for oxidative stress in the brain, which in turn imparts 

neurodegeneration in the brain [81], ultimately exacerbating mood disorders. Sas modulates the 

adenosergic pathway by attenuating the adenosine and inosine levels thereby imparting its 

antidepressant and anxiolytic effects.  

Conclusion 

In summary, our findings suggest that Sas exerts both antidepressant and anxiolytic effects. 

Furthermore, Sas modulates the adenosergic pathway, suggesting its possible role in ameliorating 

depression and anxiety-like behavior. Further studies are required to investigate the exact 

mechanisms underlying PTSD-induced mood disorders.  

Limitations 

This study only involved the behavioral aspects of PTSD and neurochemical changes. Deeper 

insights at the molecular level are required to explore the mechanism of Sas in PTSD. 
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