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Novelty statement:  
glutathione reductase is an essential enzyme in plants that contributes to cellular redox 

homeostasis. Its activity is vital for maintaining the balance between oxidized and reduced 

glutathione and is also responsible for the regeneration of reduced glutathione (GSH) from its 

oxidized form, glutathione disulfide (GSSG). The primary function of glutathione reductase is to 

maintain the cellular pool of reduced glutathione, which is an essential antioxidant molecule.  The 

enzyme is found in different subcellular compartments, including the cytosol, chloroplasts, 

mitochondria, and peroxisomes, reflecting its diverse functions within the plant cell. The activity 

of glutathione reductase in plants can vary depending on various factors such as developmental 

stage, tissue type, and environmental conditions. The present review gives a comprehensive 

overview of the importance of this enzyme.  
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Abstract 

Abiotic conditions have a significant negative impact on the growth, maintenance, and ultimately 

yield of the plant, which causes significant losses in terms of food crisis. The excessive production 

of hazardous reactive oxygen species (ROS), such as superoxide ion, hydrogen peroxide, and 

hydroxyl radicals, is the cause of oxidative stress, which is connected to basically all abiotic 

stressful situations. As a result of these reactions, the plants suffer cellular harm and molecular 

deterioration, which ultimately results in plant death. in plants under stressful conditions, a series 

of reactions (enzymatic and non-enzymatic) has started that enhance plant resistance to such 

conditions. A major enzyme of the antioxidant system is glutathione reductase (GR)because it is 

essential for maintaining the sulfhydryl (-SH) group. It maintains the GSH depletion through the 

glutathione-ascorbate pathway. Reduced glutathione also involves the removal of reactive 

oxidants which are necessary byproducts of metabolic activities so it is recognized as one of the 

most critical cellular antioxidants. On the other hand, glutathione reductase primarily keeps the 

GSH pool in its reduced form. Changes in glutathione redox status can be caused by a variety of 

biotic or abiotic stressors that impact the rate of ROS formation and detoxification 
 

Keywords: Glutathione reductase, Glutathione, ROS, abiotic stress 

 

Due to photosynthesis, plants serve as a main producer in the food chain and as a result, 

Consumers benefit.  These beneficial but static creature is facing environmental stresses. Plants 

have developed a variety of defence mechanisms against it. Two types of factors biotic such as 

diseases, pathogens and abiotic such as intense light, high temperature, cold, water stress, and salt 

stress factors affect plant growth and metabolism (Maksymiec, 2007). 

Salinity, heavy metals, water stress, high temperature, cold, and UV-B radiation are 

examples of abiotic stress factors that can similarly alter the structure of plants. Positive (such as 

tolerance) or negative (such as decreased photosynthetic activity, growth inhibition, accelerated 

senescence, or damage to the plant parts) impacts can be seen depending on the severity of the 

stress (Maksymiec, 2007; Mittler, 2006). These effects are typically caused by redox imbalances 

and excessive ROS production in the cells. ROS (O2˙ˉ, OH˙, HO2˙, H2O2) are normally present in 

various cell compartments (Karuppanapandian et al., 2008; Mafakheri et al., 2010; Mittler, 2002; 

Mittler et al., 2004; Torres et al., 2002; Vellosillo et al., 2010) but under stress and as a result of 

the loss of redox homeostasis, they may build up and cause damage to a variety of molecules, 
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including DNA, proteins, fats, photosynthetic pigments, and others (Arora et al., 2002; Dat et al., 

2000; Jaleel et al., 2009). 

 

             

 

 

 

 

 

Figure 1. ROS scavenging by antioxidants in plants under biotic and abiotic stress. 

It is believed that a vast gene network known as the "ROS gene network" controls ROS 

generation and scavenging, enabling this duality in function to exist in plants (Mittler et al., 2004). 

To generate the energy required for their developmental activities, plants need oxygen (O2). 

Ground state oxygen is converted during typical cellular metabolism to water (H2O) and reactive 

oxygen species, which include. O2˙ˉ, H2O2, HO2˙, OH˙ and 1O2 (Halliwell, 2006; Mittler, 2002; 

Scandalios, 2005). It is assumed that 1- 2%  of the O2 absorbed by plants is diverted to the ROS 

formation in distinct intercellular sites (Blokhina et al., 2003)). ROS are produced from O2 either 

through energy transfer or electron transfer processes. The reaction chain of ROS production 

initially requires an energy input, but the following phases are exothermic and spontaneous. 

Absorption of surplus energy by O2 can also result in the production of 1O2, which is a more 

reactive molecule than O2 (Halliwell, 2006; Mittler, 2002). 1O2 is formed in chloroplasts as a result 

of the photosensitization of chlorophyll (Chl) molecules under UV stress (Rao & Reddy, 2008).  
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O2˙ˉ is produced by a single electron reduction of O2 which is moderately reactive and transient 

ROS. As a result, O2˙ˉ is unable to pass through biomembranes and easily dismutates into H2O2. 

Protonation in aqueous solutions converts O2˙ˉ into HO2˙. By removing hydrogen atoms from lipid 

hydroperoxides, HO2˙ can pass across bio-membranes and start auto-oxidation of lipids (Halliwell 

& Gutteridge, 2015). H2O2 is a moderately reactive, long-lasting molecule that can permeate short 

distances away from its source. Enzymes can be inactivated by H2O2 by oxidizing their thiol 

groups. By oxidizing the thiol groups on enzymes, H2O2 can render them inactive. H2O2 might 

freely pass through membranes, allowing it to disperse harm and perhaps work as a secondary 

messenger in the plant's hormonal response to stress (Halliwell, 2006; Møller et al., 2007). This 

shows that H2O2 (ROS) is dual in its nature. H2O2 is one of the radicals that start lipid 

peroxidation(LP) since it can also produce OH˙, the ROS family member that is highly reactive 

(Halliwell & Gutteridge, 2015; Lee et al., 2007).  

Stressful situations have the potential to change the equilibrium between ROS generation 

and removal in plant cell organelles, even though reactive oxygen species are a byproduct of 

regular cellular metabolism (Apel & Hirt, 2004; Vellosillo et al., 2010). Superoxide radical (O2˙ˉ), 

hydroxyl radical (OH˙), hydroperoxyl radical (HO2˙), hydrogen peroxide (H2O2), alkoxy radical 

(RO˙) proxy radical (ROO˙), singlet oxygen (1O2) and excited carbonyl (RO*) are among the 

reactive oxygen species that are detrimental to plants (Dismukes et al., 2001; Karuppanapandian 

et al., 2008; Manoharan et al., 2005; Vellosillo et al., 2010). 

All biomolecules, severely harming biological components, Genome instability and 

abnormalities are targeted by ROS and usually lead to cell death and permanent metabolic losses 

(Karuppanapandian et al., 2011). As in (figure.2) severe oxidative stress can cause cells to go 

through fatal response pathways such as apoptosis, necrosis, and possibly other types of cell death 

pathways that can eventually result in apoptosis (Awasthi et al., 2015) 

Additionally, ROS can serve as a supplementary messenger for controlling the number of 

biological and developmental processes as well as in pathogenic resistance i.e., the HR: 

hypersensitivity response in plants (Foyer & Noctor, 2005; Guan & Scandalios, 2000; Mittler et 

al., 2004; Pei et al., 2000). 

It is not expected that OH˙ radical itself act as a signaling molecule. However, the results 

of OH˙ reactions can trigger signaling procedures. Cells effectively avoid OH˙ by sequestrating 
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the catalytic metals into metallochaperones (small proteins responsible for transporting metals) 

(Halliwell, 2006; Møller et al., 2007). Hydroxide (OH˙)cano react with all biological compounds, 

including pigments, proteins, fats, and DNA, as well as nearly every cell element. Because these 

extremely reactive ROS cannot be scavenging by pscavenged, so their excessiventhesis leads to 

programmed cell death (PCD) (Karuppanapandian et al., 2011; Manoharan et al., 2005; Vranová 

et al., 2002). 

The reactive oxygen species are removed by numerous antioxidant defence mechanisms in 

stable circumstances (Foyer & Noctor, 2005; Navrot et al., 2007). In plant cells, both the 

production of reactive oxygen species and their scavenging are controlled processes, and the plant's 

reaction is determined by the balance of oxidative and antioxidative capacity. Under a stress-free 

environment, the antioxidant defence system provides enough protection against ROS; but, under 

stress conditions, ROS generation overcomes plant scavenging capacity, which causes 

environmental stress (Apel & Hirt, 2004).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Reactive oxygen species (ROS) generation under abiotic stress (Awasthi et al., 2015) 
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Like all living organisms, Plants produce a variety of organic substances and follow 

strategies to regulate biological ROS production or the increased ROS levels under stressful 

conditions (Yousuf et al., 2012). These molecules, which are termed antioxidants, are present in 

almost all cellular organelles and function in a systematic manner (Gill & Tuteja, 2010). 

Antioxidants are crucial for the best optimal functioning of plant cells as they serve as the first 

protective barrier against damage from oxidants (Bartels & Sunkar, 2005; Gill & Tuteja, 2010; 

Miller et al., 2010; Rajput et al., 2016). Antioxidants have a role in the scavenging pathways of 

ROS as like the Halliwell-Asada (or ascorbate-glutathione) cycle in the chloroplast, the water-

water cycle in the mitochondria, the peroxisomes, the apoplast, the cytosol and the cycle of 

peroxisomal glutathione peroxidase. Because of their inert nature, plants have developed a 

complex network of cellular antioxidants made up of both enzymatic and non-enzymatic 

components that are essential for defending against a range of stressors (Rajput et al., 2021).  

The antioxidant defence mechanism prevents oxidants from harming other biological 

elements such as enzymes, nucleic acids, and unsaturated proteins and lipids. As a result, the 

scientific community has been showing a lot of interest in the defence mechanism of plants 

(Alscher et al., 1997; Dumont & Rivoal, 2019). Non-enzymatic components like free amino acids, 

α-tocopherols, alkaloids, flavonoids, carotenoids, phenolic compounds, ascorbic acid (AA), and 

glutathione (GSH). Enzymatic substances are ascorbate peroxidase (APX), catalase (CAT), 

superoxide dismutase (SOD), monodehydroascorbate reductase (MDHAR), peroxidases (POX), 

glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferees (GST), and 

dehydroascorbate reductase (DHAR) (Figure.4) (Bhardwaj et al., 2021; Maximiano & Franco, 

2022; Rajput et al., 2015). Glutathione reductase includes in the second line of defence mechanism. 

The term "scavenging antioxidants" is frequently used to describe this class of antioxidants. They 

disrupt chain propagation reactions and scavenge active radicals to prevent chain start. By giving 

free radicals an electron, they can neutralize or scavenge them in the process to transform into new 

but less harmful free radicals. By using other antioxidants of this class, these "new radicals" are 

quickly neutralized and rendered completely harmless (Ighodaro & Akinloye, 2018) 
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Figure 3. Schematic representation of general antioxidants (Bhardwaj et al., 2021) 

Antioxidant enzymes perform their functions in plants under stress conditions through a 

cascade manner. SOD dismutates oxygen (O-1) during stressful settings into O2 and H2O2, CAT 

converts the H2O2 into water and molecular oxygen (O2), and POX works in the extracellular space 

to scavenge H2O2. Plant GPX catalyses the conversion of H2O2 and HO-2 to water and lipid 

alcohols, respectively, by using thioredoxin as an electron donor. The conversion of oxidised 

glutathione (GSSG; dimeric) to reduced glutathione (monomeric form) is catalyzed by glutathione 

reductase (GR) (Rajput et al., 2021). At this stage, glutathione reductase plays an important role 

by maintaining the GSH/GSSG ratio and provides GSH to glutathione peroxidase (GPX). The 

GSH  pool (GSH/GSSG ratio)  and reducing environment in the cell are maintained by GR, which 

is important for the active operation of proteins (Creissen et al., 1994; Edwards et al., 1990). 

 

 

 

 

 

 

Figure 4. Removal of ROS species by the activation of the antioxidant cascade.  
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These enzymes also play a crucial role in the development and germination of plants by 

regulating cellular and subcellular processes like mitosis, morphogenesis, ageing, and apoptosis. 

They also serve to protect various cell constituents from harm. Additionally, they play a role in 

various mechanisms, including cell differentiation, growth and division, regulation of senescence 

and sulphate transport, detoxification of xenobiotic, metabolites complexation, control of enzymes 

metabolic activity, synthesis of proteins and nucleotides, phytochelatins, and genes functioning 

that are responsive to stress (Abdel Latif, 2011; Liu et al., 2014; Maximiano & Franco, 2022; 

Mullineaux & Rausch, 2005; Sairam et al., 2011).  

Glutathione is an oxide-reductase where NADPH is used as a cofactor that conducts both the 

oxidation and reduction processes. Because glutathione reductase is found in chloroplasts, cytosol, 

and mitochondria, it has been demonstrated that in the photosynthetic tissue of plants, the isoform 

of chloroplast is responsible for more than 80% of its activity (Ashraf, 2009; Edwards et al., 1990; 

Romero‐Puertas et al., 2006; Stevens et al., 2000). Glutathione reductase generates a homodimer 

that is linked to Flavin adenine dinucleotide (FAD). The majority of glutathione reductases in 

plants are homodimers with one FAD per monomer and molecular weights between 100 and 150 

kDa. When thiols are not present, GR generally forms tetramers and larger forms. Generally, 

glutathione reductase forms tetramers and bigger forms in the absence of thiols. Under cellular 

circumstances, the enzyme's product GSH keeps the enzyme in its dimeric state despite the 

catalytic activity of these larger forms (Yousuf et al., 2012). Instead of reagents or products, both 

pH and temperature determine the composition of the higher form, thus GR dimers can be 

converted into tetramers or either greater constituting states. GR catalytic activity is regulated by 

this mechanism (Rao & Reddy, 2008). Glutathione reductase (GR) is a part of the antioxidant 

defence mechanisms of plants because it participates in both enzymatic and non-enzymatic 

oxidation reduction activities within the cell. 

Utilizing NADPH as a cofactor, glutathione reductase changes oxidised glutathione 

(GSSG) into reduced glutathione (GSH) (Edwards et al., 1990; Romero‐Puertas et al., 2006; 

Stevens et al., 2000). One mole of NADPH is needed to turn one mole of GSSG into one mole of 

GSH. The catalytic process consists of two steps: first, NADPH is used to reduce the flavin group, 

and an oxidative disulfide bond is reduced to produce a cysteine and a thiolate anion after the 
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flavin is first oxidised. Thiol disulfide interchange reactions are used to minimize GSSG in the 

second stage (Ghisla & Massey, 1989). If GSSG does not reoxidize the reduced enzyme, there can 

be a reversible inactivation. GR functions in a ping-pong manner during the reduction of GSSG to 

GSH, NADPH binds to FAD, transfers a hydride to it, and then dissociates before glutathione can 

bind (Rao & Reddy, 2008). Furthermore, GR controls the proportion of reduced to oxidized 

glutathione and provides GSH with glutathione peroxidase and dehydroascorbate reductase. 

NADPH, H+ provides the reduction power for GR, but GR dissipates this power, which raises the 

NADP+/NADPH, H+ ratio (Hasanuzzaman et al., 2012). In cells where GSH builds up, plants 

become more tolerant to stress and their glutathione reductase activity rises. In terms of GR 

catalytic processes, it is important to note that the amount of available substrate heavily influences 

the GR redox interconversion, in contrast to the reduced GR form, the oxidised GR form exhibits 

better stability because it can withstand divalent metal ions (Rao & Reddy, 2008). GR, which also 

significantly contributes to reactive oxygen species detoxification and GSH regeneration, helps in 

the tolerance to environmental stress conditions in plants (Hasanuzzaman et al., 2012; Mirza et al., 

2010). In addition to providing a resistance to stress, enhanced GR activity has the capability of 

changing the redox condition of the essential transport system of electron constituents. The 

maintenance of oxidized to reduced glutathione ratio in the cells of the plants and GSH recycling 

play a significant role in GR's ability to resist stress (Pang & Wang, 2010; Rao & Reddy, 2008).  

Many physiological processes depend on the regulation of a large GSH/GSSG ratio by 

glutathione reductase (GR), and a decline in this ratio could be used as an indication of osmotic 

stress. Additionally, the reduced to-oxidized glutathione ratio is essential for controlling several 

procedures related to plant growth and signalling pathways. GSH content and subcellular 

distribution, in addition to redox status, are important elements in the regulation of redox signalling 

and homoeostasis (Sabetta et al., 2017). Plant homeostasis is disturbed due to ROS production in 

excess under stressful climate change situations. 

Glutathione (GSH) is a common thiol tripeptide with a low molecular weight and antioxidant 

molecule that contains Sulphur which is essential for managing plant growth, productivity and 

tolerance to stress both biotically and abiotically. Under stress conditions, glutathione readily 

develops in plant cells. Oxidized (GSSG) and reduced (GSH) are the two types of glutathione. 

under ideal circumstances, glutathione is mostly found in its reduced form (GSH), which has a 
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free thiol group. Disulfide glutathione(GSSG) is created when two molecules of reduced 

glutathione (GSH) form a disulfide bond(Sabetta et al., 2017). As reduced glutathione can 

remove reactive oxidants which are necessary byproducts of metabolic activities so it is 

recognized as one of the most critical cellular antioxidants. As a result, in both environmental 

and biological stresses in plants, GSH play an important role, where its function is to eliminate 

ROS and hence reduce the amount of oxidative damage  (Foyer & Noctor, 2005). Moreover, 

GSH is involved in the amplification of ROS signals in plants via interactions with stress 

hormones (Han et al., 2013). 

The abundant metabolite GSH in plants is known to have a role in signal transduction and 

directly scavenges OH• and 1O2. It may also protect enzyme thiol groups (Foyer & Noctor, 2005). 

GSSG accumulation in plants frequently occurs under stressful conditions and is associated with 

a rise in the total glutathione pool, which appears to be mostly brought on by GSSG accumulation 

(Mhamdi et al., 2010; Smith et al., 1984; Willekens et al., 1997). under stress conditions, oxidative 

activities overcome glutathione reductases (GR) ability to reduce glutathione. Increased 

glutathione disulfide (GSSG) concentration activates -glutamylcysteine synthetase (-ECS), 

resulting in a rise in the total glutathione pool (Figure.1). Moreover, the cytoplasm and nucleus, 

which are delicate subcellular regions, are protected from excessive GSSG buildup by the 

compartmentalization of GSSG in vacuoles. In response to oxidative stress, GSH biosynthesis can 

rise because thiol and GSH formation are triggered at the translational and post-synthetic levels in 

response to oxidative stress, GSH biosynthesis may increase (Gromes et al., 2008; Hicks et al., 

2007; Queval et al., 2009). Many GSH functions are controlled by these reversible redox 

processes. GSH synthesis depends on glutamylcysteine synthetase and glutathione synthetase both 

of these are dependent on ATP, which are respectively encoded by the nucleus genes having GSH1 

and GSH2. Plastids are the first stage in the synthesis of reduced glutathione. The second step, on 

the other hand, can occur in either the plastids or the cytosol (Sabetta et al., 2017). 

The reduced to oxidized glutathione ratio in different cell constituents can be used as a 

reliable indicator of oxidative stress and this is the reason for increase in  oxidized glutathione in 

some portions, such as the vacuole (Noctor et al., 2013). In plants under normal conditions, GSH 

and GR play the most important function in the H2O2 scavenging pathway in chloroplasts 

(Halliwell & Foyer, 1978). The high reduction status of the cellular pool of GSH is an essential 
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factor. Glutathione reductase primarily keeps the GSH pool in its reduced form, the activities of 

which are dependent on the primary electron carrier and NADPH (Edwards et al., 1990; Halliwell 

& Foyer, 1978). On the other hand, tolerance level to any kind of stress is increased due to the 

presence of glutathione reductase and reduced glutathione. The reduced to oxidized glutathione 

proportion as well as the overall GSH level have an impact on the redox capacity of glutathione 

and on balancing of interaction between targets for sensitive proteins and oxidative signals (Meyer 

et al., 2007). Due to the high sulfhydryl (SH) concentration of GSH, it guards against cellular 

component damage by scavenging free radicals. As a result, it acts as a sensitive indicator of cell 

growth and function (Tanwir et al., 2021). Different circumstances where oxidant generation takes 

place can cause glutathione to deviate from its highly reduced state that impacts the rate of ROS 

formation and detoxification (Gómez et al., 2004; Gupta et al., 1991; Vanacker et al., 2000).  

GSH functions as a scavenger, limiting severe cellular oxidation. GSH can also generate 

mixed disulfides when it reacts with various thiols. Many GSH functions are controlled by these 

reversible redox processes. Glutathione is involved in cell cycle regulation, redox signalling, 

enzymatic activity and also sense changes in cellular reduced and oxidized glutathione levels. As 

GSH’s antioxidant and signaling roles are linked so it needs an enzyme like glutathione reductase 

(GR) (Sabetta et al., 2017). Glutathione reductase not only regulates the subcellular redox 

environment but is also involve in plant reproduction which is crucial for cells to survive (Trivedi 

et al., 2013). 
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Figure 5. Glutathione content and redox state changes as a result of oxidative stress (Sabetta 

et al., 2017). 

The glutathione redox potential, which regulates the interactions between oxidant 

indicators and sensitive protein receptors, can be influenced not only by variations in the reduced-

to-oxidized glutathione ratio but also by variations in the overall reduced glutathione content 

(Meyer et al., 2007). Under oxidative stress condition in plants if the glutathione redox pool is not 

maintained properly then plants undergoes oxidative damage which leads to the death of the plant. 

Therefore, regulation of the GSH pool and tolerance to oxidative stress for plants is impossible 

without glutathione reductase (GR).  
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