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Abstract- Human stress is an increasingly prevalent and 

pervasive issue in modern society, posing significant challenges 

to individual well-being and overall societal health. There are 

many stressors in daily life that can trigger serious health issues, 

current study is focused on perceived stress. This paper aimed to 

investigate the correlation between electroencephalography 

(EEG) and Perceived Stress Scale (PSS) by utilizing data 

segmentation technique. The procedure involves: data 

acquisition, preprocessing, data segmentation, feature extraction 

and selection, and classification. The PSS scores were employed 

to record perceived stress levels of individuals. These PSS scores 

served as the basis for categorizing the data into two: stressed 

and non-stressed, and alternatively, into three classes: stressed, 

mildly stressed, and non-stressed. EEG recordings were captured 

from 40 participants (healthy and free from any known mental 

disorders) using 4 channel Interaxon Muse headband that was 

equipped with dry electrodes. The EEG data was then segmented 

into units of 10 seconds. The data was processed to extract five 

feature sets. These sets include Power Spectrum (PS), Rational 

Asymmetry (RASM), Differential Asymmetry (DASM), 

Correlation (CR) and Power Spectral Density (PSD). The stress 

level was accessed utilizing four classifiers: Multi-Layer 

Perceptron (MLP), AdaBoost M1, Random Forest and Bagging. 

The results indicate that AdaBoost M1 and Random Forest 

classifiers predicted the two classes with maximum accuracy 

levels of 91.52% and 88.47% for two- and three-class stress 

classification, respectively. These findings underline the 

importance of the chosen features and classifiers in increasing 

the prediction accuracy while contributing to the existing 

knowledge on stress detection with EEG signals. 

 

Index Terms- Feature Extraction, EEG signals, Perceived Stress, 

Stress Detection 

I. INTRODUCTION 

In daily routine, there are many factors that can cause stress in 

human beings. Stress can be the reason of less productivity in 

daily tasks and in severe cases it could be life threatening [1]. 

Stress is the body’s response to a demanding situation that can 

upset the equilibrium condition of the brain and is due to the 

physical, mental and emotional factors [2]. There are two main 

types of human stress: Perceived and Acute. Hard circumstances 

such as an unhappy marriage life, poverty, family problems and a 

poor career can all contribute to the perceived stress. On the 

other hand, Acute stress is a condition that develops quickly and 

usually arise due to an event like a near accident, a family 

argument or an expensive error at work [3]. Furthermore, 

significant health problems like stroke, heart attack and 

depression could be the result of stress. Clinical and preclinical 

studies of depression and perceived stress have revealed a 

multitude of neurochemical and morphological changes that are 

implicated in the pathophysiology of mood disorders. Moreover, 

due to complexity and heterogeneity of depression, it is 

challenging to pinpoint a single underlying abnormality caused 

by the stress [4]. The perceived level of stress can be measured 

subjectively using psychological questionnaires [5]. These 

stresses can be measured through the questionnaires created by 

researchers or either interview with a professional psychologist 

[6]. Physical and physiological techniques are also used to 

measure human stress levels. In physical measurements, changes 

could be observed in the form of eyes blink [7] and facial 

expression [8]. On the other hand, physiological techniques need 

sensors to be attached on the human body to measure changes. 

Stress has been measured through variety of methods including 

EEG [9], Heart Rate Variability (HRV) [10], Skin Conductance 

(SC) [11] and Heart Rate (HR) [12]. EEG is a technique that is 

frequently used to examine the brain activity during stressful 

situations [13]. Due to cost effectiveness, EEG could be 

preferred as a modality for monitoring the stress [14]. It is 

believed that the signals from EEG, ranging from 2-100 mV, can 

control the activity in the brain [15] and four EEG rhythms have 

been found to alter with the increasing levels of stress or fatigue 

[16]. Above 100 mV, EEG data is considered as a noise arising 

due to eyes movement or electrode. These noises need to be 

removed in order to obtain useful EEG data [17].  Four frequency 

bands that exist in EEG are: delta band (0.5-4 Hz), theta band (4-

8 Hz), alpha band (8-13 Hz), beta band (13-30 Hz) [18]. By 

utilizing different number of electrodes, EEG data could be 

measured with the open or close eyes. Close-eye activity is 

simply with the participants eyes closed whereas in open-eye 

activity participants concentrate on a white screen [19]. The aim 

of the EEG-based study was to establish a link between EEG 

signals and PPS scores of the participants [20]. Beta bands are 

usually used for regression analysis to study the PSS score of 

individuals. High value of beta activity has been observed for 

perceived stress when compared with no stress conditions. In 

view of all this, timely coaching is required to minimize the 

effects of stress. In this regard, J. Bakker et al. measured physical 

stress symptoms utilizing sensor technology and proposed a 

framework for the stress management [21]. Physical symptoms 

of stress were observed through sensors in calendar, social media 

and email correspondence. The obtained results were not clear 
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and hence, additional information was required in order to detect 

a significant physiological process using Galvanic Skin Response 

(GSR) peaks [22]. H.Jebelli et al recorded EEG data of workers 

in the construction sites and applied many supervised algorithms 

to extract time and frequency features. The best results for stress 

detection were achieved through Gaussian Support Vector 

Machine. Similar results were obtained when compared with the 

clinical results recorded using wired EEG devices [23]. An 

acquisition protocol was designed by S. A. Hosseini et al. to 

conduct EEG signals in picture induction environment, while 

using both linear and non-linear features for the extraction of 

EEG parameters. The classification accuracy of 82.7% was 

achieved with Elman classifier [24]. M. M. Sani et al. recorded 

EEG data from a shelter center and classified alpha band data for 

energy spectral density and PSD. An accuracy of 83.3% was 

achieved by energy spectral density with the EBF kernel function 

[25]. G. Jun et al. used two stressors to induce two and three 

level stress. While analyzing power band features of EEG data an 

accuracy of 75% was obtained for the three levels of stress 

recognition utilizing SVM classifier. Whereas, an accuracy of 

96% and 88% was achieved in two level stress analysis using 

mental arithmetic test and Stroop color-word test respectively 

[26]. A. R. Subhani et al proposed a machine learning framework 

for the analysis of EEG signals from stressed participants. The 

proposed framework included EEG feature extraction, selection, 

classification and tenfold cross validation. The accuracies for 

stress identification were 94.6% and 83.4% for two level and 

multiple level stress respectively [27]. J. F. Alonso et. al. applied 

functional connectivity evaluation and univariate analysis to 

access the induced stress using EEG signals. An increase in beta 

band while decrease in high alpha band and entropy was 

observed [28]. EEG alpha asymmetry was also discussed for 

stress related disorders in the virtual environment [29]. R. 

Khosrowabadi et al. designed Brain Computer Interface (BCI) 

for classifying chronic mental stress using PSS 14. The proposed 

BCI showed an accuracy of 90% when the features were 

extracted by Magnitude Square Coherence Estimation [30]. 

Relationship between PSS score and closed eye resting state 

EEG data in perceived stress classification was studied by Saeed 

et al. and it was found that the beta band activity in the subjects 

with high stress was increased [15]. In another study, a single 

channel EEG headset was utilized by Saeed et al. to predict the 

PSS questionnaire score. By utilizing multiple linear regression, 

with an accuracy of 94%, this study also confirmed high beta 

band activity in the perceived stress [31]. Saeed et al. also 

proposed classification scheme for the perceived stress detection 

by using correlation-based feature selection method which 

resulted in highest correlation of beta and low gamma frequency 

bands with PSS score [32]. In a research conducted by Hamid et 

al., a significant difference in energy spectral density of alpha 

and beta bands, for stressed and non-stressed individuals, was 

found in the left and right hemispheres [33]. In order to establish 

a connection between EEG signals and human stress, Sulaiman et 

al. used alpha symmetry marker [34]. Negative correlation was 

observed in PSS questionnaire score and relation of alpha and 

beta band EEG signals in a study conducted by Hamid et al. [35]. 

Luijcks et. al. studied the correlation of EEG signals with EEG 

temporal characteristics and questionnaire score. It was found 

that the frontal brain has high theta band activity in post stimulus 

phase as compared to pre stimulus phase [36]. The classification 

of perceived stress by Saeed et al. contained PSS score, recorded 

EEG data and psychologist interview labelling which resulted in 

an accuracy of 85.20% [37]. 

Based on the available literature, the current study aims to 

explore the potential correlation between EEG signals and PSS 

scores for two and three class stress classification with a special 

focus on EEG data segmentation. This study diverges from the 

traditional methodology where a continuous (three minutes) EEG 

recording from each participant was captured. These (three 

minutes) recordings were subsequently broken down into 

segments of 10 seconds each. This method of data segmentation 

was adopted to investigate its potential impact on the overall 

accuracy of the stress findings. Up till now, no such specific data 

segmentation strategy has been reported. 

II. MATERIAL AND TECHNIQUES 

The schematic diagram of the methodology for categorizing 

perceived stress utilizing EEG is given in figure 1. Four stages of 

capturing the EEG data such as acquisition, pre-processing, 

feature extraction and selection and classification are shown in 

the figure.  

 

Figure 1: Block diagram illustrating the procedure for evaluating human 

stress using EEG 

A. EEG Data Acquisition 

1) Participants 

Forty participants, with the age ranging from 18 to 40 years, 

were included in the current study. All the participants had either 

completed 12 years of education or university students and free 

from any mental disorder. The experimental study was 

performed according to the Helsikni declaration [38] and The 

University of Engineering and Technology Taxila, Pakistan 

approved this advanced technological progress and research 

study. 

2) Apparatus 

Interaxon Muse headband at a sampling rate of 256 Hz was used 

to measure the EEG signals [39]. Dry electrodes were located at 

positions AF7, AF8, TP9, and TP10 on a four channel headband 

[40]. A reference electrode was aligned at position Fpz on the 

participant’s forehead (shown in figure 2 (b)).  

Figure 1: EEG Recording Apparatus (a) Wireless Muse EEG Headset 

(b) Electrode Positioning on Scalp 
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Frontal electrodes were made of silver while conductive silicon 

rubber was used for the temporal electrodes [41]. The recorded 

EEG data from the headband was transmitted to a smartphone via 

Bluetooth pairing, and the data was recorded on the smartphone 

using the Muse Monitor mobile app. Later, the data was 

transferred to PC for further offline processing. 

3) Experimental Procedure 

All the participants were guided about the experimental 

procedure and were made to sit in calm and temperature-

controlled space with regular lighting conditions. After obtaining 

informed consent, the experiment commenced, and participants 

were initially asked to complete a demographic questionnaire 

(bio data sheet) which includes information about their age, 

gender, and history of any mental illnesses. Later, the subjects 

were instructed to fill PSS questionnaire to evaluate the 

perceived stress levels. This 10-item questionnaire calculates the 

amount of stress a person experienced over the last 30 days. The 

subjects could respond to each question on a scale from 0 to 4, 

with 0 for no stress experience and 4 for frequent experience 

over the past 30 days [42]. After gathering the questionnaire 

results, each subject was classified according to its obtained PSS 

score. In the end, EEG data was recorded for three minutes with 

open eyes in a relaxed position while sitting. 

4) Pre-Processing 

The EEG data acquired from the subjects was initially processed 

prior to the stage of feature extraction and categorization. An 

onboard DRL feedback mechanism was utilized to minimize the 

noise in the recorded EEG signals [43]. The purpose of DRL 

circuits was to ensure the good contact between EEG electrodes 

and the skin. A clean EEG signal can be obtained by thresholding 

characteristics like mean power, power standard deviation, peak 

amplitude, amplitude standard deviation, amplitude kurtosis, and 

amplitude skewness of the EEG signal [44]. However, the Muse 

headband had a built-in noise reduction feature which determined 

the EEG signal clean and ensure that the incoming signal 

exhibited variance, amplitude, and kurtosis values below a 

certain predefined threshold [45]. The frequency bands of EEG, 

including delta (0–4 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta 

(12–30 Hz), and gamma (30–50 Hz), were acquired through the 

Muse headband's internal digital signal processing unit. This 

processing unit applies Fast Fourier Transform to the raw EEG 

signals with 90% overlap on a window size of 256. 

B. Feature Extraction and Selection 

The interpretation of the collected EEG data involved extracting 

five feature sets from each frequency band for each channel, with 

each segment being 10 seconds long. These four features were; 

PS [46], RASM [47], DASM [48], CR [49] and PSD [50]. PS 

represents the average absolute power across four scalp 

electrodes in the five EEG signal frequency bands. PS consists of 

twenty features (five for each channel). RASM signifies the ratio 

of the absolute power between asymmetrical channels in the left 

and right brain hemispheres [51]. A total of ten RASM features, 

five from each band for each pair, were obtained. DASM is the 

disparity between the absolute power of asymmetrical channels 

in the left and right brain hemispheres [52]. For this, a total of ten 

DASM features - five from each band for each pair were 

attained. CR measures how two variables change with respect to 

each other [53]. In this reported work, CR between asymmetrical 

channels for the brain left and right brain hemispheres was 

computed. Specifically, CR between electrode pairs (TP9, TP10) 

and (AF7, AF8) were evaluated. This yielded a total of ten values 

- five from each frequency band for each pair. The PSD outlines 

the power spread of the signal over specific frequencies. Here, 

Welch method [54] was utilized to compute the PSD with 50% 

overlap. The mean and variance of the PSD from each band and 

channel were taken as features, resulting in 720 values from four 

channels and five bands. 

Feature selection entails identifying and choosing the most 

pertinent and valuable features or variables from the initial data 

set to create a more precise and effective model [55]. The 

primary goal of feature selection is to remove superfluous, 

insignificant, or noisy features which leads to a reduction in data 

dimensionality. This will make an improvement in the model 

performance, and an increase in interpretability. In this current 

study, wrapper method was used for feature selection [56]. 

1) Wrapper Method 

The wrapper method is a feature selection mechanism that 

'wraps' the learning model, scrutinizing various feature 

assortments to find the one that enhances model performance the 

most [57]. The classifier is trained multiple times by utilizing 

feedback from each iteration to choose a subset of features for 

subsequent iterations. While these methods are more 

computationally intensive than embedded methods, they 

eliminate the data points that poorly discriminate between class 

labels when evaluated individually [58]. 

C. Classification 

Four distinct classification algorithms were deployed to 

categorize perceived stress levels. 

1) Multi-Layer Perceptron 

A Multi-Layer Perceptron (MLP) is a type of neural network 

consisting of multiple layers of neurons. These layers are input, 

hidden, and output. The input layer receives the patterns while 

the output layer produces the results. Neurons in each layer are 

connected to the neurons in the adjacent layers with each 

connection having a specific weight that influences the response 

of neurons in the subsequent layer [59]. MLPs can virtually 

approximate any function with sufficient hidden units and 

training data hence solving the complex problems. The learning 

process of MLP, similar to the brain learning, involves 

presenting the network with a training set. This training set 

contain input and corresponding desired output patterns. The 

network starts with random connections and then refined through 

a process called backpropagation. This adjusts the weights based 

on the error between the desired and the actual outputs. This 

process is repeated multiple times with the same data until the 

connection weights are optimized. To evaluate the generalization 

performance of the network, it can be trained with a portion of 

the dataset (e.g., 80% training set) and tested with the remaining 

data not used for training (e.g., 20% test set) [60]. 

In the reported work, the learning rate for MLP was set at 0.3 

which is a moderate step size for navigating the loss function's 

terrain. The momentum was set to 0.2. The model ran for 500 

epochs while iterating through the entire dataset for each epoch. 

The error threshold was set at 20 and the random number 
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generation seed was set to 0. The parameter for the number of 

hidden layers was automatically determined by the model. 

2) Random Forest 

The random forest classifier [61] employs an ensemble learning 

technique for the classification by utilizing multiple decision 

trees during the training process and producing an average 

prediction from the individual tree. This classifier creates forests 

containing random number of trees each producing unique 

outputs. Standard decision tree algorithms rely on a set of rules 

for dataset prediction and are rule-based. In contrast, random 

forest classifier randomly determines the root node and feature 

splits instead of using the gini index [62] or information gain for 

root node calculation. The decision process involves a majority 

vote, selecting the most frequently occurring class among these 

outputs. Consequently, the classifier's output is the class that has 

garnered the most votes [63]. 

In current study, each bag size was set to 100% of the training set 

size with 100 iterations indicating the number of trees in the 

forest. Computation was conducted sequentially with the number 

of execution slots set to 1. The classifier was configured to use 

the square root of the total number of attributes (K 0) while the 

minimum number of instances per leaf was set to 1.0. The 

variance for split calculation was assigned a value of 0.001 and 

the seed for the random number generator was initialized to 1. 

3) Bagging 

The bagging classifier algorithm is a method that utilizes various 

subsets of data from the datasets while dividing them into 

training and testing data. This algorithm generates multiple 

predictions or probability values which are then voted upon to 

derive a single real value [64]. For classification problems, the 

aggregation typically constitutes a majority vote. While, for the 

regression problems an average of predictions is taken.  

In this work, bagging meta-classifier model was used, employing 

J48 decision trees as base classifiers. The bagging sample size 

was set to 100%, matching the training set size. A random seed 

of 1 ensured randomness in the bagging process. The execution 

was sequential with a single execution slot. The model performed 

60 iterations, creating and training 60 separate J48 decision tree 

classifiers. The J48 classifier used a pruning confidence factor of 

0.25, and had a minimum of 2 instances per leaf. 

4) AdaBoost M1 

The AdaBoost M1 algorithm is designed to optimize the 

classifier performance. As a member of the ensemble learning 

methodology family, it synergizes multiple low-performing 

learners into a single more accurate high-performing learner. The 

core concept of AdaBoost is that a weak learning algorithm, 

which performs marginally better than random guessing, can be 

transformed into an exceptionally accurate and powerful learning 

algorithm [65].  

In current study, the AdaBoost M1 algorithm was implemented 

by employing J48 decision tree. The size of each bag, relative to 

the size of the training set, was set at 100%. The seed for random 

number generation was set to 1 and the number of iterations was 

fixed at 60. The base classifier used for boosting was the J48 

decision tree with a confidence threshold for pruning set to 0.25 

and a minimum number of instances per leaf was set to 2.  

III. EXPERIMENTAL RESULTS 

A. Data Labelling 

Based on their PSS scores, Participants were categorized as two-

class (non-stressed and stressed) and three-class (non-stressed, 

mildly stressed, and stressed) stress classification (shown in 

figure 3).  

 

 
Figure 3: Distribution of Participants based on PSS score for (a) two- 

and (b) three-class stress classification 

The PSS scores of 40 participants yielded a mean (µPSS) of 21.8 

and a standard deviation (σPSS) of 7.15.  In the case of two-class 

stress classification, participants with PSS scores ranging from 0 

to 20 were labeled as non-stressed while those scoring between 

21 and 40 were identified as stressed. This classification resulted 

in 22 subjects being marked as stressed with the remaining 18 

subjects falling in the non-stressed category. In the three-class 

stress classification, participants were divided into three groups 

based on the specific ranges of PSS scores. Subjects with a PSS 

score between 0 and (µPSS - σPSS/2) were labeled as non-

stressed, those with a PSS score between (µPSS - σPSS/2) + 1 

and (µPSS + σPSS/2) - 1 were labeled as mildly stressed and 



Journal of Xi’an Shiyou University, Natural Science Edition                                                                                                      ISSN: 1673-064X    

 

http://xisdxjxsu.asia                                                  VOLUME 19 ISSUE 07 JULY 2023                                                                  946-954 

those with a PSS score ranging from (µPSS + σPSS/2) up to 40 

were identified as stressed. Following this scheme, 12 

participants were labeled non-stressed, 17 were mildly stressed, 

and 11 were identified as stressed. 

B. Performance Analysis 

1) Two-Class Stress Classification 

The MLP model achieved an overall accuracy of 90.28% by 

correctly classifying 650 instances. The calculated kappa statistic 

was 0.8033 which signified the strong agreement between the 

model's predictions and the actual classes. The Mean Absolute 

Error (MAE) and the Root Mean Square Error (RMSE) were 

relatively low 0.1109 and 0.2892 respectively, indicating the 

model's predictions were relatively close to the actual values. 

The Relative Absolute Error (RAE) and the Root Relative Square 

Error (RRSE), measures of the model's prediction errors in 

relation to a simple predictor, were 22.41% and 58.13% 

respectively. Looking at the class-specific metrics, the model 

demonstrated slightly better performance on the "stressed" class, 

with a higher True Positive (TP) rate of 0.919 when compared to 

0.883 for the "non-stressed" class. This indicates that the model 

was somewhat more effective at correctly identifying "stressed" 

instances. Both classes had high F-measures (0.912 for "stressed" 

and 0.891 for "non-stressed") indicating good balance between 

precision and recall. The Matthews Correlation Coefficient 

(MCC) values came out to be 0.803 for both classes, suggesting 

that the binary classifications are highly correlated with the 

observed outcomes. The Receiver Operating Characteristic 

(ROC) area and Precision Recall Curve (PRC) area were above 

0.9 for both classes implying that the model has a strong 

discriminative capacity between classes and a high precision-

recall trade-off. The confusion matrix confirmed the model's 

superior ability to correctly identify "stressed" instances (364 

correct predictions out of 396 actual instances) compared to 

"non-stressed" instances (286 correct predictions out of 324 

actual instances). It was observed that the misclassifications, 

“non-stressed" class being classified as "stressed” were more 

prominent [66].  

The bagging model demonstrated better performance, correctly 

classifying 644 instances, with an overall classification accuracy 

of 89.44%. However, the model exhibited MAE of 0.2491 and 

RMSE of 0.3218. The RAE and the RRSE are 50.33% and 

64.69% respectively, indicating that the model predictions have 

relatively higher errors. The class-specific metrics showed that 

the model had a slightly higher TP rate of 0.919 for the 

"stressed" class compared to 0.864 for the "non-tressed" class. 

This suggested that the model was better at correctly identifying 

"stressed" instances. The precision was also high for both classes 

(0.897 for "non-stressed" and 0.892 for "stressed"). Thus, 

indicating a strong performance in terms of the proportion of TP 

identifications from all positive predictions. The MCC values 

were 0.786 for both classes, suggesting a substantial correlation 

between the observed and predicted binary classifications. The 

ROC area for both classes was 0.937 indicating high TP rate and 

a low false positive (FP) rate. The PRC area was also high for 

both classes. In the confusion matrix, the model made more 

correct predictions for the "stressed" class (364 out of 396 actual 

instances) compared to the "non-stressed" class (280 out of 324 

actual instances). However, most misclassification came from the 

"non-stressed" class which was incorrectly predicted as 

"stressed". 

The Random Forest model achieved an overall accuracy of 

89.58% correctly classifying 645 instances with misclassification 

rate of 10.42%. The kappa statistic of 0.789 signified substantial 

agreement between the model's predictions and the actual 

classes. Examining the detailed accuracy by class, the model 

achieved a TP rate of 86.7% for "non-tressed" and 91.9% for 

"stressed". Meanwhile, the FP rate was relatively low 8.1% for 

"non-tressed" and 13.3% for "stressed". The F-Measure was 

0.882 for "non-tressed" and 0.907 for "stressed". These high 

values suggested that the model performed well in terms of both 

retrieving relevant instances (recall) and the proportion of correct 

positive predictions (precision). However, the MAE and RMSE 

were relatively high, 0.2592 and 0.3173 respectively. The 

confusion matrix provided further support for these findings, the 

model correctly classified 281 as "non- stressed" and 

misclassified 43 instances as "stressed". In the "stressed" 

category, the model correctly identified 364 instances while 

incorrectly labeled 32 instances as "non-stressed". The MCC also 

suggested a strong performance, with a score of 0.789, indicating 

a high degree of correlation between the observed and predicted 

binary classifications. 

  

Figure 4: Confusion Matrices for (a) Multi-Layer perceptron, (b) 

Random Forest, (c) Bagging, and (d) AdaBoost classifier for two class 

classification (where, NS=Non Stressed & S=Stressed). 

The AdaBoost M1 model results indicated a strong performance 

with an overall accuracy of 91.53%. The kappa statistic was 

0.8282. Examining the detailed accuracy by class, the model 

showed slightly better performance on "stressed" instances with a 

TP rate of 0.939 compared to the "non-stressed" instances with a 

TP rate of 0.886. In addition, the model demonstrated strong 

precision, recall, and F-measure scores for both classes hence 

reinforcing its effective predictive capacity. The confusion 

matrix further elaborated on the performance, where the model 

classified 287 out of 324 instances correctly as "no-stressed" and 

misclassified 37 instances. For the "stressed" class, the model 

performed even better by correctly classifying 372 out of 396 

instances and incorrectly classifying 24. The relatively higher TP 

rate and lower FP rate for the "stressed" class suggest that the 

model was more adept at identifying "stressed" instances 

compared to the "non-stressed". These results overall indicated a 

robust classification capability of the AdaBoost M1 model in this 

scenario. 

2) Three-Class Stress Classifications 

The bagging classifier demonstrated an overall classification 

accuracy of 81.9444%. The model's kappa statistic was 0.7237, 
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representing a substantial level of agreement between the 

predictions and the actual classes. The MAE value was 0.2315, 

and the RMSE 0.3117. However, the RAE of 53.0998% and the 

RRSE of 66.7704% indicated a fair degree of prediction error 

compared to a naive baseline model. In terms of class-specific 

accuracy, highest TP rate for the "mildly stressed" class (0.833), 

followed by "non- stressed" (0.824), and "stressed" (0.793) was 

observed. The FP rate was highest for the "mildly stressed" class 

(0.126). Precision was relatively well-balanced across the 

classes. The model achieved F-Measure scores between 0.803 

and 0.832 across all the classes, suggesting a fairly balanced 

model performance. The MCC scores ranging from 0.707 to 

0.737 also indicated a good correlation between predictions and 

the actual classes. The ROC area was above 0.9 for all the 

classes. Similarly, the PRC area was high across all the classes. 

The confusion matrix revealed that the model performed best in 

classifying "non-stressed" instances correctly (178 correct 

predictions) and struggled the most with "mildly stressed" 

instances (255 correct predictions). 

  

Figure 5: Confusion Matrices for (a) Multi-layer Perceptron, (b) 

Random Forest, (c) Bagging, and (d) AdaBoost classifier for two class 

classification (where, NS=Non Stressed, MS=Mildly Stressed & 

S=Stressed). 

The AdaBoost M1 model exhibited a strong overall classification 

accuracy of 88.3333%, correctly classifying 636 instances. The 

kappa statistic for this model was 0.8209. This suggested that the 

model's predictions were reliable and not simply due to chance. 

The MAE and the RMSE were fairly low at 0.0792 and 0.2756 

respectively, indicating that the model's predictions were quite 

close to the actual values. The RAE of 18.1801% and the RRSE 

of 59.0315% both highlighted that the model's prediction errors 

were significantly lower than a simple predictor, reinforcing the 

model's superior performance. In terms of class-specific metrics, 

this model demonstrated high performance across all classes, 

with TP rates above 0.86 for all the classes. The model was 

particularly adept at identifying the "mildly stressed" class, with 

the TP rate of 0.905. The FP rates were low across the board, 

indicating that the model seldom misclassified instances into the 

wrong class. The F-measure showed high values for all the 

classes, ranging from 0.878 to 0.888, suggesting good balance 

between precision and recall. MCC was above 0.8 for all the 

classes. The model exhibited strong discriminative capacity as 

suggested by ROC area values above 0.96 for all the classes. 

Likewise, the PRC area values reflected the trade-off between 

precision and recall signifying that the model maintained a strong 

balance between these two metrics. The confusion matrix 

demonstrated that the model performed best in identifying "non-

stressed" instances (187 correct predictions) and least adept in 

correctly identifying the "stressed" instances (172 correct 

predictions). Misclassifications were primarily between "non-

stressed" and "mildly stressed" classes, and also between 

"stressed" and "mildly stressed" classes. 

The Random Forest model correctly classified 637 instances, 

equating to an overall accuracy of 88.4722%. This superior 

performance is reinforced by the kappa statistic of 0.8223. 

Despite its strong classification performance, the model exhibited 

a relatively high MAE of 0.2472 and RMSE of 0.305. The RAE 

and the RRSE were 56.7049% and 65.33% respectively. Class-

specific performance of the model was also remarkable, with the 

"mildly stressed" class experiencing the highest TP Rate at 

0.935. Both "non-stressed" and "Stressed" classes had TP rates 

above 0.84. FP rates were minimal for all classes, indicating that 

the model did not misclassified instances frequently. The model's 

precision, recall, F-Measure, and MCC all exhibited high values 

and hence suggested that the model's predictions were reliable 

across all the classes. Furthermore, all classes had ROC area 

values above 0.958 which signified excellent class discrimination 

capabilities. Likewise, high PRC area values attested the model's 

solid performance in balancing precision and recall. The 

confusion matrix reveals that most misclassifications occurred 

between the "non-stressed" and "mildly stressed" classes, as well 

as between the "stressed" and "mildly stressed" classes. Overall, 

the Random Forest model exhibited robust performance in 

classifying instances into all three categories. 

IV. DISCUSSION 

The obtained results had shown varying levels of accuracy with 

different classifiers. While, a comparison with literature revealed 

a rich blend of methodologies, models, and features employed by 

various researchers in the past. For the two-class stress classifier 

system, the current study used MLP, bagging, Random Forest, 

and AdaBoost M1. Among these, AdaBoost yielded the highest 

accuracy with 91.52% correct classification instances followed 

closely by MLP. However, from literature it was revealed that a 

range of other classifiers were also used. For example, C.K. 

Alfred & C. Chia employed Linear Discriminant Analysis 

(LDA), K-Nearest Neighbor (KNN) and Artificial Neural 

Network (ANN) classifiers and achieved a maximum 

classification rate of 72% through KNN with Discrete Cosine 

Transform (DCT) [67]. Likewise, Saeed et. al. utilized the Naive 

Bayes algorithm and achieved an accuracy of 71.4% in stress 

level classification [31]. 

In the three-class classifier system, the Random Forest and 

AdaBoost classifiers achieved relatively high accuracy rates of 

88.4722% and 88.3333% respectively. Whereas, Arsalan et al 

managed to achieve 64.28% accuracy for three-class 

classifications utilizing similar set of classifiers and highlighting 

the potential variability in performance across different datasets 

and stress detection approaches [20]. Saeed et al. demonstrated 

that correlation-based feature subset selection techniques 

combined with neural oscillations improved the stress 

classification accuracy to 78.57% [32]. These findings closely 

align with the AdaBoost findings for the 3-class classifier in the 

current study. Similarly, Jebelli et al. reported an accuracy of 

71.1% by utilizing support vector machine learning algorithm 
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[68] which again mirrors the findings of the present study. Nagar 

& Sethia also corroborated the results of the current study by 

highlighting the effectiveness of the KNN algorithm in 

classifying stress with 74.43% average classification accuracy 

[69]. Arsalan et al. reported 75% accuracy rate with MLP 

classifier [70]. This accuracy rate is slightly lower than the 

corresponding results in the present study.  

 

Figure 6: Accuracy achieved for two- and three-class stress 

classification using the Multi-Layer Perceptron, Bagging, Random 

Forest, and AdaBoost M1 classifiers. 

Previous studies have shown that the stress detection utilizing 

EEG signals is feasible and effective. A. Hamid et al. and 

Hambali et al. found correlations between EEG signals and stress 

levels as measured by the PSS [35], [71]. Similar to this, the 

findings from the current study stand comparatively well against 

the findings from the literature for both two- and three-class 

stress classification. Nevertheless, some studies exhibited even 

higher accuracy levels as Saeed et al achieved stress 

classification accuracy of 85.20% through Support Vector 

Machines and alpha asymmetry [72]. In terms of features, the 

current study leveraged a varying number of attributes for 

different classifiers. These attributes consisting of several distinct 

features ranging from 20 to 30 in the two-class stress classifier 

system and from 14 to 28 in the three-class stress classifier 

system. Whereas, other studies had explored the use of various 

distinctive features such as alpha and beta asymmetries [72], low 

beta waves [31], or EEG-based connectivity patterns [73]. It 

should be noted that while the results of the present study are 

promising, the literature survey revealed a myriad of 

methodologies employed for stress detection. Each study targeted 

a different aspect of stress and leveraged different features, 

classifiers, or number of attributes. The differences in the 

obtained results highlight the importance of considering factors 

such as diversity of the study population, types of stressors used, 

choice of classifier, and features selected. 

V. CONCLUSION 

An analytical investigation has been conducted with the main 

objective to classify Stress Levels in individuals. The study 

primarily focused on binary and multiclass stress classification 

using Power Spectrum, Rational Asymmetry, Differential 

Asymmetry, Correlation and Power Spectral Density features 

extracted from the Alpha, Beta, Gamma, Delta, and Theta bands 

of EEG signals. These features were extracted from EEG data 

segments with a duration of 10 seconds. A wrapper method was 

used to select the features that contributed the most to the 

classification accuracy. The selected features were then utilized 

as input for four classifiers: Multi-Layer Perceptron, Bagging, 

Random Forest, and AdaBoost M1. It was noted that the findings 

highlighted the effectiveness of AdaBoost M1 and Random 

Forest classifiers in predicting the classes, obtaining maximum 

accuracy of 91.52% and 88.47% respectively for two and three 

class stress classification. In future, our aim is to classify stress 

levels for four-class classification. 
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