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Abstract: The goal of this paper is to approximate fractional third-order dispersive 

partial differential equations using an efficient scheme titled as Reduced differential 

transform method (RDTM). The advantage of using RDTM is, it can produce an 

analytically approximate answer in the form of a convergent power series with easily 

ascertainable components. Without using any discretization, constrictive assumptions 

or transformation, the approach determines the solution while taking into account the 

application of the proper beginning conditions. Our test cases show the precision and 

effectiveness of the suggested approach, and the solution behavior is shown in tables. 

The numerical findings on different values of α are contrasted with the Differential 

Transform Method, Laplace-Adomian Decomposition and Homotopy Analysis 

Sumudu Transform method. Additionally, it has been found that there is a strong 

correlation between the numerical results and the documented numerical and precise 

solutions in this study. In order to conveniently explain many additional fractional 

differential equations, the offered approach thus exhibits the reliability, efficacy, 

competency, and strengthening of resultant conclusions. 
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1 Introduction  

There are great advancements expected in the field of fractional order calculus and its applications. 

Numerous academicians have utilized FDEs to explore and depict logical occurrences across a 

range of scientific disciplines. [1-5]. Viscoelasticity, electromagnetic waves, the diffusion 

equation, and other areas are some of the most important applications [6]. The nonlocality of FDEs 
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is their most important characteristic when applied to the aforementioned phenomena and others. 

Thus, differential operators offer a great tool for describing memory and hereditary features of 

diverse materials and procedures. In the context of fractional derivatives, partial differential 

equations (PDEs) are regarded as a potent tool in mathematical modelling to comprehend and 

interpret some structures of physical events that are intricate and unpredictable owing to outside 

influences. For this reason, scholars have used them to both construct a natural problem that is 

easily accessible and to simplify the regulating design without sacrificing any genetic information 

or memory impact. Additionally, several efforts have been effective in recommending solid 

numerical methods for treating the fractional PDEs of physical importance. Numerous real-world 

issues, such as traffic flow, oscillation, earthquakes, and gas dynamics [1] which may be restated 

as nonlinear PDEs in light of fractional derivatives, can be understood very well through the 

solutions of PDEs of fractional order. Therefore, it is important to develop a practical and useful 

method for identifying analytical answers to these and other challenges. A variety of iterative 

strategies, for instance variational iteration method, homotopy perturbation method, modified form 

of homotopy perturbation transform technique, homotopy analysis scheme, finite difference 

scheme, residual power series approach, the Adomian decomposition method, Differential 

transform technique , predictor-corrector, Haar wavelet and numerous others, have been 

constructed to find  the solutions of a variety of Fractional models including both ODEs and PDEs 

[7-18] 

The method named “Reduced differential transform method” (RDTM) was created by Keskin and 

Oturanc [19] and it was shown that it is the analytical methodology that can be employed as the 

simplest and it delivers the precise answer to differential models. RDTM strategy is very 

trustworthy, efficient, and potent computational approach for resolving physical issues [20-22]. In 

chemical reactions the Brusselator reaction-diffusion system arises which was studied by 

Taghavi.et.al as a time fractional dynamical model using RDTM [23]. Ramani and his fellows 

determines approximate solutions of Fitzhugh-Nagumo equation through RDTM [24]. The key 

role of this work is to analyze FTD-PDEs by the proposed RDTM technique. 

  

2 Preliminaries of Fractional Calculus 

 

Numerous definitions on fractional derivatives and integrals are available in literature. Some of 

them are ℛeimann–ℒiouville, 𝒥umarie’s , 𝒞aputo and ℛiesz, Grunwald- Letnikov, the Weyl and 

many others. The widely used are Caputo and ℛeimann- ℒiouville fractional derivative. 

Definition 1 [25] The Reimaan –Liouville  defined the fractional integral operator for an 

integrable function ( )x S   as 
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i. J J J   +=  

ii. J J J J  =  

iii. ( ) ( ) ( )( )tJ J t J J    =  

iv. ( )
( )

( )
( )

1

1
J t t

  


 
 

+ +
− = −

 + +
 

where , 0 1and    − . 

Definition 2 [25] 

Caputo defined the fractional order derivative as  
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For more details on fractional derivatives, refer to [26]. 

 

3    Reduced Differential Transform Method 

 

A constantly differentiable function ( , ) ( ). ( )s x t p x q t=  can be signified as [22] 
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 However, when applying inverse transformation on ( )kS x  , it yields  
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From equations (2) and (3), and  0 0,t =  we get 
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For more details, see Table 1 

 

 Table 1: Specific operations of RDTM 
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3.1   Method Implementation 

 

Considering the general form of fractional order partial differential equation. 

                ( ( , )) ( ( , ) ( ( , )) ( ( , ))L s x t R s x t s x t L u x t+ +  =                                                                  (5) 

with the initial guesses   

              ( ,0) ( ), ( ,0) ( )ts x v x s x w x= =                                                                                 (6) 
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Here ,tL D R= is the linear differential operator, ( , )u x t denotes non-homogeneous source term, 

whereas N  is the generalized nonlinear operator. 

By applying the transformed forms of RDTM [22] in equations (5) and (6), we get 
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After successive iterations of 1 ( )kS x+ , we apply the inverse transformation to get the series solution

0
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= . Additionally, the exact solution is given by ( , ) lim ( , )n
n

s x t s x t
→

= . 

 

4   Application 

 

Here we consider two model problems of FTD-PDE to elucidate the competence and reliability of 

the proposed method. 

 

Test Problem 1 Consider a FTD-PDE [16] 

       ( , ) 2 ( , ) ( , ) 0t x xxxx t x t x t  + + = ,       0, 0 1t                                                (9) 

with an initial guess ( ,0) sinx x =  and exact solution at 1 = is ( , ) sin ( )x t x t = − . 

 

Test Problem 2 Consider another FTD-PDE [16] 

       3( , ) ( , ) sin sin cos cost xxxx t x t x t x t    + = − − ,          0, 0 1t                            (10) 

with an initial guess ( ,0) sinx x =  and time- dependent boundary conditions 

(0, ) 0, (0, ) cos , (0, ) 0x xxt t t t   = = =              

The exact solution at 1 = is ( , ) sin cosx t x t = . 
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5 Results and Discussion 

Table 2 and 3 shows the results obtained of the test problems 1 and 2 respectively, indicating the 

approximate result obtained by RDTM at various grid points. The proposed method RDTM is 

compared with other techniques namely LADM, HASTM and DTM revealing high accuracy and 

precision. Moreover, the approximate solution derived by RDTM and the actual solution for 1 =

are in good agreement. Graphical illustrations are also given in Fig. 1-2 and 3-4 for problem 1 and 

2 respectively at 1 = . 

Table 2. Contrast with LADM, HASTM, DTM, RDTM and Exact solution of Problem 1 for 1 =  

x t LADM [7] HASTM [9]  DTM [16]    RDTM     Exact 

0 0.1 −0.0998334 −0.099833 −0.0998334 −0.0998334 −0.0998334 

0.2 0.1 0.0998334 0.0998334 0.0998334 0.0998334 0.0998334 

0.4 0.1 0.2955202 0.2955202 0.2955202 0.2955202 0.2955202 

0.6 0.1 0.4794255 0.4794255 0.4794255 0.4794255 0.4794255 

0.8 0.1 0.6442176 0.6442176 0.6442176 0.6442176 0.6442176 

1.0 0.1 0.7833269 0.7833269 0.7833269 0.7833269 0.7833269 

 

 

Table 3. Contrast with LADM, HASTM, DTM, RDTM and Exact solution of Problem 2 for 1 =  

x t LADM [7] HASTM [9] DTM [16] RDTM Exact 

0 0.1 0 0 0 0 0 

0.2 0.1 0.5877852 0.5877852 0.5877852 0.5877852 0.5848487 

0.4 0.1 0.9510565 0.9510565 0.9510565 0.9510565 0.9463051 

0.6 0.1 0.9510565 0.9510565 0.9510565 0.9510565 0.9463051 

0.8 0.1 0.5877852 0.5877852 0.5877852 0.5877852 0.5848487 

1.0 0.1 0 0 0 0 0 

 

 

Table 4. Numerical values of the problem 1 by RDTM for different values of   

x t 0.5 =  0.75 =  0.99 =  1 =  

0 0.1   -0.333988034 -0.191293221  -0.102574207 −0.099833416 

0.2 0.1   -0.147534765  0.006496338   0.097081289   0.099833416 

0.4 0.1   0.0448002487  0.204026911   0.292866461   0.295520207 

0.6 0.1   0.2353492187  0.393423574   0.476975971   0.479425539 

0.8 0.1   0.4165155578  0.567135681   0.642069955   0.644217688 

1.0 0.1   0.5810767360  0.718237878   0.781566635   0.783326911 
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Moreover, numerical values on different values of  are also examined and listed in table 4 and 5 

respectively. Both test problems were analyzed at different grid points and It can be clearly seen 

that as the value of  comes close to 1, the numerical results are approaching towards the exact 

solution. It is notable that RDTM requires less computation and gives an approximate series 

solution in just few iterations.  

 

Table 5. Numerical values of the problem 2 by RDTM for different values of   

x t 0.5 =  0.75 =  0.99 =  1 =  

0 0.1 0 0 0 0 

0.2 0.1 0.5877852 0.5877852 0.5877852 0.5877852 

0.4 0.1 0.9510565 0.9510565 0.9510565 0.9510565 

0.6 0.1 0.9510565 0.9510565 0.9510565 0.9510565 

0.8 0.1 0.5877852 0.5877852 0.5877852 0.5877852 

1.0 0.1 0 0 0 0 

 

 

     

 

          Fig 1 Exact solution for problem 1 at 1 =                  Fig 2 RDTM solution for problem 1 at 1 =  

 



Journal of Xi’an Shiyou University, Natural Science Edition                                                                      ISSN: 1673-064X 
 

http://xisdxjxsu.asia                                        VOLUME 19 ISSUE 12 DECEMBER 2023                                           608-617   

                 

 

        Fig 3 Exact solution for problem 2 at 1 =                  Fig 4 RDTM solution for problem 2 at 1 =  

 

6 Conclusion  

In this paper, time-fractional third-order dispersive partial differential equations are analyzed by 

employing RDTM technique in order to achieve the series as well as approximate analytic 

solutions. Two test problems are analyzed at distinct values of   to access the competence of the 

proposed method. The findings obtained by the other approaches and the precise results by RDTM 

exhibit a very high degree of agreement. The numerical outcomes demonstrate high convergence 

rate of the suggested method. RDTM may be summed up as a great improvement over current 

numerical methods and may therefore be utilized to resolve several non-linear fractional partial 

differential equations that arises in scientific and engineering applications. 
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