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Abstract- Vehicular Ad Hoc Networks (VANETs) enables real-

time communication between vehicles. VANETs address issues 

like Urban traffic congestion and frequent accidents that pose 

challenges to commuters leading to delays, inefficiencies, and 

safety hazards. However, the effectiveness of VANET could be 

hampered via high node mobility and sparse vehicle distribution, 

necessitating novel and efficient optimization approaches. This 

study introduces the Crayfish Optimization Algorithm (COA) for 

Vehicular Ad Hoc Networks (COANET), designed to intelligently 

optimize clusters within the VANET framework. To evaluate the 

efficacy of COA, comprehensive experiments were conducted, 

benchmarking the results against two state-of-the-art algorithms: 

Intelligent cluster optimization algorithm. based on whale 

optimization algorithm for VANETs (WOACNET) and An 

Intelligent Harris Hawks Optimization Based Cluster 

Optimization Scheme for VANETs (HHO). The comparison is 

focused on key performance metrics, including cluster stability, 

communication efficiency, and resource utilization. The findings 

demonstrate that the developed method outperforms both well-

established methods WOACNET and HHO by 10%. The proposed 

method optimized clusters exhibit increased stability, reduced 

communication latency, and improved overall system 

performance. These results highlight the potential of COANET as 

a promising optimization tool for improving the effectiveness and 

functionality of VANETs as part of the larger framework of 

Intelligent Transportation System. 

 

Index Terms- Crayfish Optimization Algorithm, Vehicular Ad 

Hoc Networks, Crayfish Optimization Algorithm for VANETs, 

Whale Optimization Algorithm for Clustering in VANETs, Harris 

Hawk Optimization. 

 

I. INTRODUCTION 

he complexity of real-world optimization problems in 

computer science, especially in the domain of AI and ML, is 

constantly rising. Optimization issues can take on several forms, 

such as discrete, continuous, non-linear, multi-model, multi-

dimensional, etc. [1]. Research also exhibits that these techniques 

are not necessarily the best choice for issues that continuous, 

discrete, or differentiable [2]. Meta-heuristic algorithms, known 

for their independence and broad applicability to real-world 

optimization problems. Their inclusion of stochastic operators 

facilitates extensive exploration of the solution space for optimal 

results. However, their sensitivity to user-defined parameters is a 

common limitation. Recent decades have seen a rise in meta-

heuristic approaches in computer vision and machine learning. 

Well-known meta-heuristics include Particle Swarm Optimization 

(PSO) [3], Genetic Algorithms (GA) [4], and ANT Colony 

Optimization (ACO) [5]. Meta-heuristic techniques are important 

in computer science and related fields. Many meta-heuristic 

methods incorporate random variables to solve problems without 

variation. The techniques are applicable to the present problems 

since they start with a random solution and less involve 

computations to find space. Inspiration for these solutions comes 

from Birds, animals, nature and insects. These algorithms are user 

friendly. These algorithms effectively explore the whole working 

space, eliminating the need for local optimization. A vital network 

field, is growing and updating daily for a brighter future [6]. 

Various kinds of networks come together to form the Internet of 

Things (IoT). The transportation sector, constituting the legal 

means of moving goods or individuals between locations, has 

encountered various challenges over time, Issues such as elevated 

accidents, blockade and carbon emissions have emerged. Given 

the intricate nature of these challenges, researchers have 

endeavored to integrate virtual technologies into transportation, 

leading to the development of what is known as Intelligent 

Transport Systems [7]. The aforementioned problems highlight the 

importance of intelligent clustering techniques for ITS, which can 

make them more scalable, optimized, managed, and load balanced 

[8]. In ITS, vehicles share information via ad hoc connections. 

There are also transient network creations in VANETs for resource 

sharing. ITS have proceeded to supplemental divisions based on 

communication method. VANETs include Communication 

between vehicles (V2V), as well as Communication between 

vehicles and infrastructure (V2I) as shown in Figure 1. A vehicular 

network is a constantly changing network in which nodes move in 

an random manner, resulting in frequent variations in the node 

arrangement [9]. 

 

Figure 1: Clustering in VANETs [10] 

T 
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Dynamic cluster formation is a critical network management 

method in the context of ITS, Clusters are virtual sets that are 

generated by an algorithm for clustering [11]. In most 

circumstances, any node might be chosen to be the CH [12]. 

Intelligent clustering algorithms play a key role in making 

VANETs more scalable, maintainable, optimized, and traffic 

balanced.  In ITS, cluster formation refers to the spontaneous as 

well as adaptive formation of clusters, which are groups of 

vehicles, for effective data exchange and communication [13]. In 

a clustering configuration, one node is designated as the Cluster 

node or Cluster Head, while the other nodes form a collection or 

group. Node similarity could be determined using factors such as 

distance, bandwidth availability, speed, and direction of vehicular 

nodes. Certain grouping rules determine how various clustering 

approaches differ. Important parameters to consider when building 

these clusters include transmission ranges, grid size, number of 

nodes, speed, and direction of nodes, via optimizing these factors, 

the lifetime could be increased of the clusters and, by extension, 

the network's performance. Performance improves as nodes 

remain in a cluster for longer periods of time. Establishing 

networks. The clustering procedure relies heavily on CH selection 

[8]. CH is responsible for creating and destroying clusters, 

allocating resources to cluster members, and choosing the topology 

for maintenance. In vehicle networks, CH essential for tasks such 

as creating and breaking clusters, maintaining topology, and 

distributing resources. Their job is to make sure the clusters can 

talk to one other. The cluster node-to-CH conversion ratio and the 

CH change ratio are crucial metrics for gauging clustering stability, 

a key performance indicator of networks. Performance, reliability, 

and communication delays are all enhanced by cluster 

optimization [14]. Following are few key points addressed in this 

study. 

1. The study employs nature-inspired meta-heuristic algorithm 

for ITS to address combinatorial optimization challenges, 

specifically clustering. 

2. A novel clustering method is proposed, where every target is 

assigned a weight depending on the fitness function of each 

vehicle. 

3. Vehicles have been equipped with self-imposed weights to 

decrease inaccuracy by reducing unpredictability. 

4. In order to evaluate the developed approach, was compared 

with other methods considering variables in the system such 

as communication range and load balancing factor. 

II. LITERATURE REVIEW 

bio-inspired algorithms have given outstanding solutions when it 

comes to vehicle network routing, safety, and efficient parking,  In 

VANET networks, routing mostly involves communicating with 

different vehicles to disseminate information about road 

conditions, accidents, and emergencies [15]. A renowned 

algorithm that takes its inspiration from nature is PSO, which uses 

the idea of a community of fish and birds as its foundation. 

Optimizing vehicle routes is another area where this approach has 

lately found use in VANET networks. To discover the best routes 

in VANETs, for example, a PSO-based clustering routing protocol 

(CRBP) is introduced [16]. The author examines V2V VANETs 

to improve vehicle communication within ITS. The focus was on 

clustering vehicles through bio-inspired routing algorithms 

(CLPSO and MOPSO) [17], with a comparison of their 

effectiveness in terms of transmission range, cluster and node 

quantities, and grid size. By only considering into account nodes 

that are moving at the same speed and direction, an improved 

Particle Swarm Optimization (PSO) approach for clustering is 

introduced in [16, 18]. ITS provide a number of design issues, 

some of which are a changing network layout, Variety of devices, 

transmission range, Node distribution, privacy and security. The 

right network topology is necessary for effective communication 

systems because it influences how nodes communicate with one 

another. Due to the limited transmission range along with constant 

movement of Mobile nodes in VANETs. ACO-Based Clustering 

method was suggested by researchers in [19] as an additional 

method for VANET (CACONET). In order to save network 

resources, CACONET optimizes two clustering operations: 

cluster minimization and CH stability. The iCHHO algorithm, 

inspired by Harris Hawks' Optimizes intelligent route clustering 

[20]. The system's whole fleet of vehicles is organized into various 

clusters. Each cluster assigns one node the duty of gathering data 

from every node in that particular cluster and transmitting it to 

other clusters or sinks. CH [21], the primary node with 

responsibilities, is referred to in this way. CHs are chosen using 

some metrics [22]. CH is applied to reduce the number of direct 

communication lines between sensing nodes and the data sink 

[17]. In a study [23] a methodology, ANT Colony Optimization, 

is employed that aims to minimize the number of shortest routes 

to the sink. Previous iterations of this method relied on the 

assumption that all sensory units needed to be in close proximity 

to the sink in order to communicate. Author in [19] presented a 

sophisticated routing optimization method for ITS. This approach 

leverages swarm intelligence and integrates the principles of ANT 

Colony Optimization (ACO) to improve the effectiveness of 

routing in the network. High mobility causes scalability problems 

due to the frequent topology changes. A clustering [24] approach 

based on Grey Wolf Optimization is presented in [9]. Two 

strategies—single-hop and multi-hop communication are 

employed in literature. In the first method, Data packets are sent 

directly from each device to the target location. While a 

subsequent strategy optimizes multi-hop communication in ITS by 

including clustering technology [25]. P-WOA, a probability-based 

whale optimization algorithm for cluster-based routing, surpassing 

ALO and GWO with a 75% improvement in cluster efficiency 

[26]. The Moth Flame Based Clustering method (CAMONET) is 

introduced in [27] which aims to enhance network stability by 

applying the Moth Flame Optimization (MFO) technique, with an 

emphasis on the cluster lifetime and the optimal number of CH. 

On the other hand, because of the unique characteristics of ITS, A 

set of guidelines created for WSN along with MANETs Are less 

executed in the case of ITS. Due to their specific requirements, 

Because nodes and their specifications, like as memory along with  

power utilization, vary widely in ITS, there are difficulties with 

issues like Quality of Service (QoS), among others [28]. The 

authors in [29] proposed the lion optimization algorithm (LOA) 

for the optimization of vehicular ad hoc networks (VANETs). This 

is a modified LOA QoS-based routing algorithm employed for 

pathfinding in VANETs. This harnesses the key attributes of a lion 

within a group and leverages the progression from nearby to a 

more powerful entities to enhance the navigation capabilities of 

Quality of Service (QoS) in vehicles. The authors in [30] presents  
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a new approach to optimize the routing in Internet of Vehicles 

(IoV) networks. It utilizes the Harris Hawks' Optimization 

technique to effectively handle cluster stability and the dynamic 

changes in network topology. A comparative examination reveals 

this approach outperforms existing strategies in terms of cluster 

optimization, stability, Packet Delivery Ratio, bandwidth 

consumption, and latency. In [8] a cluster optimization technique 

for VANETs is introduced, utilizing whale optimization to fine-

tune various parameters including communication range, number 

of nodes, network size, and load-balancing outcomes. This 

optimization process leads to an optimal number of clusters, 

effectively distributing network resources and prolonging the 

network's lifespan. 

 

III. METHODOLOGY 

This section focuses on clustering and selecting CHs in vehicular 

scenarios, employing an optimization algorithm inspired by 

crayfish behavior. The process initiates with the exploration phase, 

where vehicles on the highway share their data. Following this, the 

clustering procedure (exploitation phase) selects a CH based on 

each vehicle's fitness functions. This deploys intelligent clustering 

for VANET networks, utilizing a nature-inspired population-

based approach. In Figure 2, exhibits the proposed COANET flow 

diagram. The steps of the suggested algorithm are outlined below. 

Typically, routing protocols focus on essential communication 

parameters. For instance, temperature-based protocols prioritize 

lowering node temperatures, considering hotspots, avoiding body 

motion, and optimizing energy usage. Similar to other routing 

systems, VANET often overlooks or minimizes important 

parameters in favor of a single one. Recognizing the significance 

of various aspects in VANET communication, there is a critical 

need for improved routing protocols. In order to make the VANET 

more effective, adaptable, and solvable, the developed framework 

employs an intelligent The 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       

 

   

Figure 2: Proposed COANET Methodology 

clustering mechanism to enhance the network's data packet 

routing.  As the theory behind evolutionary algorithms goes, in any 

given population, only the most fit individuals will survive. A 

maximized function is employed to produce a number of possible 

answers. This maximal function, which is an abstract metric or 

threshold, produces a more meaningful result.  In order  

to find an even better solution, this fitness metric is used to choose 

the best candidate solution. These possible answers are the result 

of a number of processes, including as recombination and 

mutation. Recombination employs two potential solutions to 

produce a new solution (the offspring) by means of an operator, in 

contrast to mutation, which employs a single candidate solution. 

The process is carried out until a satisfactory solution shows up. 

Following this process often brings closer to the optimal work 

flow of evolutionary algorithms shown in Figure 2, where the 

components that must be included when constructing evolutionary 

algorithms. 

1. Initialization: Create a starting population of prospective 

resolutions for the problem. 

2. Evaluation Function: A fitness function, acting as the 

foundation for enhancements, is identified. It establishes a 

threshold value that solutions must achieve to be deemed 

acceptable. 

3. Population: It encompasses every conceivable response. 

4. Selection: Determine alternatives that could form the 

foundation or origin for the ensuing iteration. 

5. Variation Operator: Two variation operators, mutations, and 

recombination are employed to choose new solutions from the 

current ones. 

6. Survivor Selection Strategy: In the subsequent evolutionary 

round, parents, acting as capable children, provide optimal 

solutions. The current generation's offspring become 

maximizing functions for future solutions as they reach 

maturity for evaluation. 
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A. CRAYFISH OPTIMIZATION ALGORITHM 

The crayfish, with its hard shell resembling a shrimp, falls under 

the classifications of arthropod, crustacea, or decapod. it exhibits 

night appearances and cave-digging tendencies. Thriving in 

various environments, over 600 crayfish species are identified 

with the ability to dig. These caves, essential for protection and 

various activities, differ in shape and function depending on the 

species. Crayfish, weighing 40-60 g after six months, show varied 

development rates influenced by environmental temperature. The 

ideal temperature for crayfish is 25° C, as temperatures below 25° 

C could impact r feeding and growth. Extremely high temperatures 

may force crayfish onto land, leading to oxygen deprivation. In 

terms of feeding habits, crayfish use their claws for capturing and 

dissecting large prey, while smaller prey is directly gripped and 

nibbled. These behaviors contribute to their survival and 

ecological role in freshwater environments. Crayfish often use 

their claws to grab big prey, and then they rip it apart with their 

second and third walking feet, which they then use to grasp and 

chew. On the other hand, for smaller prey, they use the same feet 

to directly grip and nibble [31], as seen in Figure 3. 

 

 
Figure 3: Structure diagram of crayfish [31] 

 

B. SOURCE OF INSPIRATION 

COA takes its inspiration from the crayfish's foraging, vacation 

during the summer, and competitive nature. In COA, the foraging 

and competition stages are considered exploitation, whereas the 

summer resort stage is considered exploration. At the beginning of 

the method, the crayfish colony Y is defined to represent the 

features of swarm intelligence optimization. The solution is shown 

by the ith crayfish's location, Yi = { 𝑌𝑖,1, 𝑌𝑖,1, 𝑌𝑖,1... 𝑌𝑖,𝑑𝑖𝑚}, Where 

dim is the characteristic quantity of the optimization problem, 

sometimes called dimension, and 𝑌𝑖 is the set of all possible values 

from 1 to dim. 𝑌𝑖 utilizes the fitness value, or the function f (·), to 

find a solution. Temperature, a random constant representing the 

ambient temperature, controls the COA exploration and 

exploitation processes. Once the mercury rises beyond a certain 

point, COA will transition into its summer resort or competitive 

phase. Revise the updated solution during the summer resort stage 

based on the individual's position 𝑌𝑖 and the cave's position 𝑌𝐶𝐻 . 

When the weather is right, COA will start to hunt for food. the 

solution acquired by the optimum solution, are used to determine 

the food size. When the meal is ready, crayfish use their position 

to find new solutions. 𝑌𝑖, a constant dietary intake p, and an  

 

updated food position  𝑌𝑁𝑜 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 . When the meal is too big, 

crayfish will rip it up with their claw foot, then consume it 

alternately with their second and third walking feet. To mimic the 

crayfish's alternate eating habit, we utilized the sine and cosine 

equations. A crayfish's food consumption may be regulated. 

Consumption of food follows a positive distribution as a function 

of temperature [31]. 

C. INITIALIZATION 

In the context of VANETs, every vehicle is depicted as a matrix 

with dimensions of 1x dim in a multi-dimensional optimization 

scenario. each column within the matrix indicates a solution to a 

specific problem. Within Vehicular Ad Hoc Networks (VANETs), 

a set of variables (𝑌𝑖,1, 𝑌𝑖,2, ..., 𝑌𝑖,𝑑𝑖𝑚) is subject to constraints, with 

each Yi variable confined within predetermined upper and lower 

limits. The initialization process entails the random generation of 

a set of potential solutions Y within the given solution space. All 

vehicles represent candidate solutions within a solution space, 

where the vehicle set Y is determined by the population size (N) 

and dimension (dim). The initialization is represented by eq 1. 
 

Y= [𝑌1, 𝑌2, . . . , 𝑌𝑁] =

[
 
 
 
 

 

𝑌1,1 . . . 𝑌1,𝑗 . . . 𝑌1,𝑑𝑖𝑚

⋮ . . . ⋮ . . . ⋮
𝑌𝑖,1 . . . 𝑌𝑖,𝑗 . . . 𝑌𝑖,𝑑𝑖𝑚

⋮ . . . ⋮ . . . ⋮
𝑌𝑁,1 . . . 𝑌𝑁,𝑗 . . . 𝑌𝑁,𝑑𝑖𝑚

  

]
 
 
 
 

,       (1) 

In eq 1, Y represents the initial position of the vehicles, N stands 

for the total number of vehicles, and dim corresponds to the 

dimension of all vehicles on the highway. Each 𝑌𝑖,𝑗 signifies the 

position of vehicle i along the jth dimension, with its value 

obtained from eq 2. 

𝑌𝑖,𝑗= 𝑙𝑏𝑗+(𝑢𝑏𝑗 – 𝑙𝑏𝑗) x rand                         (2) 

where 𝑙𝑏𝑗 stands for the jth dimension's lower limit 𝑢𝑏𝑗  is the 

maximum value that can be represented by the jth dimension, 

whereas rand is a random integer. 

 

D. ENERGY LEVEL AND SEARCHING OF VEHICLES 

The change of energy will affect the behavior of vehicles to make 

clusters with the vehicles of different energy levels. The different 

energy levels will make CH to enter different stages. The Energy 

level of the vehicle is given in eq 3. The CH will select a summer 

vacation stage when the Energy level exceeds 30. In terms of 

suitable energy, the CH will conduct foraging stage. The CH is 

affected by energy of the surrounding vehicles. The CH performs 

well between the 15, 30 and 25 energy level where they can exploit 

the other vehicles. When energy levels are between 20 and 30, 

CHs will engage in vigorous foraging activities. ITS specifies an 

energy level range of 30–35. 

E = rand x 15 + 20,                              (3) 

where E represents the energy of the vehicles where the CH is 

located. Mathematical Model of a searching of vehicles p, 

                             p = 𝐶1 x (
1

√2 𝑥 𝜋 𝑥 𝜎
 x exp (-

(𝐸−µ)2

2𝜎2 ))                  (4) 

 

CH's optimal energy level is denoted by µ, whereas σ and 𝐶1   are 

utilized for vehicle searches at various energy levels. 

 

E. SUMMER RESORT STAGE(EXPLORATION) 

When Energy of the vehicles is greater than 30 the energy is at an 
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excessive level, at this time the vehicles possess sufficient energy 

to escape from a CH and the CH will choose summer vacation. CH 

exploring for vehicles is a random event. When randomness is less 

than 0.5 it means that there is no other vehicle for CH to explore. 

At this stage the CH will enter the summer resort stage using eq 5. 

𝑌𝑖,𝑗
𝑡+1= 𝑌𝑖,𝑗

𝑡 + rand x (𝑌𝐶𝐻-𝑌𝑖,𝑗
𝑡 )                        (5) 

Each 𝑌𝑖,𝑗  signifies the position of vehicle i along the jth dimension, 

t is the current iteration number, and t + 1 is the iteration number 

for the following generation. 𝑌𝐶𝐻  showcases the optimal position 

attained through the cumulative iterations and the current vehicle's 

optimal position. At the summer resort stage, the goal of CH is to 

explore the surrounding vehicles. Which represents the optimal 

solution. This brings vehicles closer to the optimal solution and 

enhances the exploitation ability of COA. 

 

F. COMPETITION STAGE(EXPLOITATION) 

When the Energy level of the vehicles is above 30 and the 

randomness value is equal to or greater than 0.5, it indicates that 

other vehicles are also showing interest in becoming a CH. The 

CH will enter a competition stage as shown in eq 6. 

 

    𝑌𝑖,𝑗
𝑡+1=𝑌𝑖,𝑗

𝑡 -𝑌𝑧,𝑗
𝑡 +𝑌𝐶𝐻                                 (6) 

During the Competition stage, vehicles engage in competitive 

interactions, and vehicle 𝑌𝑖 repositions themselves in response to  

the position 𝑌𝑧 of another vehicle. By modifying the location, the   

exploratory range of the CH is enlarged, hence improving the 

algorithm's exploratory capability. 

 

G. FORAGING STAGE(EXPLOITATION) 

When the Energy of the vehicles is below or equal to 30. at this 

time the vehicles possess low energy, Currently, the vehicle will 

exhibit movement in the direction of the CH. Upon locating the 

vehicles with such appropriate energy levels, the CH will assess 

the dimensions of the positions of the vehicles. The CH is based 

on the magnitude of the Number of vehicles.  If T (Number of 

vehicles) is more than (𝐶3 + 1)/2, where 𝐶3 is the Vehicle factor, 

representing the largest no of vehicles, and the value is constant 3. 

To model the alternating procedure, a blend of the sine and cosine 

functions is employed to replicate the oscillating sequence. the CH 

will use eq 7 to first select the nearest vehicles and then attack on 

them. 

𝑌𝑖,𝑗
𝑡+1=𝑌𝑖,𝑗

𝑡 +𝑌𝑁𝑜 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠  x p x (cos (x π x rand) – sin (2x π x rand)) 

(7) 
p represents the searching of vehicles. When T is less than or equal 

to (C3 + 1)/2, the CH will simply attack on the other vehicles. The 

eq 8 is given as followings: 

 

𝑌𝑖,𝑗
𝑡+1= (𝑌𝑖,𝑗

𝑡 - 𝑌𝑁𝑜 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠) x p + p x rand x 𝑌𝑖,𝑗
𝑡        (8) 

To improve the algorithm's resource use and ensure its high 

convergence capacity, CH will systematically approach the most 

favorable solution throughout the foraging stage. 𝑌𝑁𝑜 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

represents optimal solution. The mathematical modeling and 

simulation for the devised COANET-based approach are 

presented in pseudo-code format, as detailed in Table 1.

 

 

 

Table 1.  Pseudocode of developed COANET 

 

PSEUDOCODE OF DEVELOPED COANET                                                        

 

1: Set up the starting points for all the vehicles, including 

their speeds, positions, and directions. 

2: Create a network design with a grid of interconnected nodes 

and vertices; assign a unique identifier to each vertex. 

3: Computation of the distance between vehicles, 

standardization, and linking these distances in a mesh network 

structure 

4: Start a new population of randomly selected vehicles 

5: Determine the vehicles fitness values.  

 6: Y* = the finest search agent (Cluster Head) 

While (current iteration< maximum number of iterations) 

Defining E as Energy of vehicle by eq 3 

 E = rand x 15 + 20,  (3)     
IF E>30  

      If rand<0.5  The positioned vehicle's location should be updated by 

eq 5 

    𝑌𝑖,𝑗
𝑡+1= 𝑌𝑖,𝑗

𝑡 + rand x (𝑌𝐶𝐻-𝑌𝑖,𝑗
𝑡 )   (5) 

   Else position of the vehicle should be updated location by eq 6 

      𝑌𝑖,𝑗
𝑡+1=𝑌𝑖,𝑗

𝑡 -𝑌𝑧,𝑗
𝑡 +𝑌𝐶𝐻    (6) 

   End 

Else The searching of vehicles p is obtained by eq 4  

       

 

 

 

 

  p= 𝐶1 x (
1

√2 𝑥 𝜋 𝑥 𝜎
 x exp (-

(𝐸−µ)2

2𝜎2 ))        (4)  

  IF E ≤ 30 

 & T > (𝐶3 + 1)/ 2   

Then the currently positioned vehicle's location should be updated by eq 

7     

  𝑌𝑖,𝑗
𝑡+1=𝑌𝑖,𝑗

𝑡 +𝑌𝑁𝑜 𝑜𝑓 𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠 x p x (cos (x π x rand) – sin (2x π x rand)) (7) 

 

Else position of the vehicle should be updated location by eq 8 

     𝑌𝑖,𝑗
𝑡+1= (𝑌𝑖,𝑗

𝑡 - 𝑌𝑁𝑜 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠) x p + p x rand x 𝑌𝑖,𝑗
𝑡      (8) 

 

     End  

End 

7: Verify and update any search agents that explore beyond the 

search region 

8: Determine each vehicle's fitness level 

9: Update Y* if there is a better solution 

Current iteration = current iteration+1 

10: end while 

11: return Y* 
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IV. RESULTS AND DISCUSION 

This section showcases the simulation outcomes obtained by 

taking several network parameters, including communication 

range, number of vehicles, network size, and load balancing 

factor. The acquired findings were then compared to those of 

existing benchmark methods, namely WOACNET and HHO. The 

proposed approaches and methodologies were executed 

commissioning GPU settings (Octave Library) and the Google 

Colab simulation configuration. Factors such as grid size, 

transmission range, and node count are included in the findings 

that correspond to the techniques below. 

For several grid sizes, modeling and simulations were conducted.  

Both WOACNET and HHO were used to compare with 

COANET. Clusters were formed synthetically with transmission 

ranges of 100m to 1000m and a grid size of 1km x 1km, 2km x         

2km, 3km x 3km and 4km x 4km. The simulation parameters are 

shown in a table 2.   

 

Table 2.  Simulation Parameters 

 

 

 

Experiments were carried out with 50 nodes across grid sizes of 

1km x 1km, 2km x 2km, 3km x 3km and 4km x 4km varying the 

transmission range from 100m to 1000m. The proposed method, 

COANET, demonstrated superior optimization compared to 

WOACNET and HHO, yield an optimal number of clusters shown 

in Figure 4. The findings demonstrate cost-effectiveness for 

different transmission ranges. 

Figure 5 illustrates that experiments were conducted with 70 nodes 

across grid sizes of 1km x 1km, 2km x 2km, 3km x 3km, and 4km 

x 4km, where the transmission range was set from 100m to 1000m. 

The proposed method, COANET, exhibited superior optimization 

compared to WOACNET and HHO, yielding an optimal number 

of clusters. The findings indicate that the suggested COANET is 

the most practical communication algorithm. Experiments show 

that expanding the Transmission range reduces the number of 

clusters. The number of clusters parameters exhibits an inverse 

correlation with the communication range, Decreasing the 

communication range results in an increase in the overall number 

of clusters within the network, and conversely, expanding the 

communication range leads to a reduction in the total clusters. The 

number of clusters affects network resources. In contrast to earlier 

methods, the newly developed COANET surpasses them under the 

specified conditions outlined in Figure 5. The outcomes clearly 

indicate that the optimized COANET approach improves routing 

through efficient clustering, resulting in a reduction in the number 

of hopes for network communication. Consequently, this 

minimizes packet delays and routing costs, leading to reduced 

resource requirements for a smaller number of clusters. 

 

 

 

              

Figure 4. Transmission Range vs No of clusters for 50 Nodes in 1x1km, 2x2km, 3x3km, 4x4km Grid size 

Parameters Values 

Population Size 120 

Maximum Iterations 350 

Inertia Weight W 0.694 

Lower Bound (lb) 0 

Upper Bound (ub) 100 

Search plane 2D 

Communication Range 100m-1000m 

Mobility Model Freeway mobility model 

Simulation Runs 10 

W1 (weight of first objective function) (Multi-

objective) 

0.5 

W2 (weight of second objective function) 

(Multi-objective) 

0.5 

Nodes 40–70 
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Figure 5. Transmission Range vs No of clusters for 70 Nodes in 1x1km, 2x2km, 3x3km, 4x4km Grid size 

V. CONCLUSION 

This paper introduces an innovative approach to cluster 

optimization for resource efficiency. The study employs a 

clustering optimization technique inspired by the behavior of 

crayfish in nature. The efficacy of this approach is assessed and 

examined utilizing both contemporary and cutting-edge 

methodologies. In terms of the number of CHs, the developed 

method COANET outperforms the existing algorithms, such as 

WOACNET, and HHO when communication ranges, network 

size, and the number of vehicles is varied. Furthermore, the 

suggested technique decreases the overall costs of the network 

by minimizing CHs to nearly optimal levels and enhancing 

cluster stability. Additionally, the application of the proposed 

clustering in VANETs has the potential to enhance routing 

scalability and reliability. This was achieved by grouping 

vehicles, forming a hierarchical network grounded on 

geographical and velocity distribution. In future, 

experimentation on extending the developed method within 

dynamic vehicular environments is progress. 
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