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Abstract- This paper introduces a novel methodology for precise 

segmentation of melanoma and non-melanoma skin images. 

Initially, a Region of Interest (ROI) encompassing the lesion is 

extracted from the input image. Subsequently, the image 

undergoes preliminary segmentation via k-means clustering to 

isolate the lesion region, followed by refinement using 

morphological operations. The resulting segmentation serves as 

the basis for initializing the contour in the application of the 

Local Gaussian Distribution Fitting (LGDF) energy model, a 

well-established method for segmenting skin images. Extensive 

evaluation on a publicly available dataset comprising both 

melanoma and non-melanoma skin images demonstrates the 

superior performance of our proposed approach in terms of 

segmentation iterations, accuracy, and computational time. Our 

method offers a promising tool for aiding clinicians in the early 

diagnosis and treatment planning of skin cancer. 

 

Index Terms- Melanoma, Non-melanoma, Region of Interest, k-

mean Clustering, Morphological Operation, and Gaussian 

Distribution. 

 

I. INTRODUCTION 

he The predominant forms of cancer in the modern world are 

skin cancers, specifically melanoma and non-melanoma. 

These neoplasms have elevated the global prevalence of 

cutaneous malignancies [1]. According to data from the 

American Institute for Cancer Research in 2018, approximately 

22 percent of skin cancer cases were classified as melanoma, 

while the remaining 78 percent were classified as non-melanoma. 

The most prevalent non-melanoma tumours are basal cell 

carcinoma and squamous cell carcinoma. In 2018, the global 

incidence of melanoma reached 300,000 new cases, positioning it 

as the 19th most prevalent form of cancer among both males and 

females. Non-melanoma ranks as the fifth most prevalent form of 

cancer in both males and females, with a reported incidence 

exceeding one million cases [2]. The increased prevalence rates 

can be attributed to various factors, including exposure to UV 

radiation [3], shifts in clothing patterns, heightened outdoor 

activities, the depletion of the ozone layer, an extended lifespan, 

genetic predisposition, and the induction of immune system 

suppression [4]. According to estimates, approximately 20 

individuals in the United States succumb to melanoma on a daily 

basis. The projected number of deaths caused by melanoma in 

2019 is around 7230, with 4745 being males and 2485 being 

women [2]. Indicators of skin cancer include any alteration in the 

shape, colour, or size of a bruise, an unhealing sore on the skin, 

or abnormal growth of the skin. The timely identification of the 

lesion has the potential to enhance the likelihood of successful 

treatment and significantly decrease both illness and death rates. 

During the initial phases of skin cancer, the manual diagnosis 

relies on the availability of proficient physicians equipped with 

appropriate medical equipment. In numerous instances, the 

absence of specialized medical practitioners and adequate 

healthcare infrastructure hinders the timely detection of skin 

cancer. In the field of dermoscopy, the detection of skin cancer is 

facilitated through the utilization of an automated computer-

aided diagnosis (CAD) system [5]. Automated computer-aided 

design (CAD) has been employed within the medical domain for 

over a decade. Skin lesions are being classified using a 

computer-aided design (CAD) system that employs image 

processing and machine learning methods. Segmentation holds 

greater significance in CAD. Segmentation in computer-aided 

design (CAD) involves the division of a dermoscopy image into 

two distinct regions: the lesion region and the unaffected region. 

The outcomes of the diagnostic system are significantly 

influenced by the level of segmentation executed. 

The literature has offered several methodologies for the 

segmentation of cutaneous lesions [6], [7], [8], [9]. There are 

three primary classifications for segmentation techniques: 

clustering-based, threshold-based, and active contours. The 

statistical region merging (SRM) algorithm, proposed by Emre 

Celebi et al. [10], is founded on the principles of region growth 

and region merging. The approach developed by the researchers 

demonstrated superior performance compared to four existing 

automatic methods, namely orientation-sensitive fuzzy c-means, 

mean shift clustering, the tumour extraction algorithm, and the 

modified JSEG method. 

 

The authors [11] suggested employing JSEG algorithms for the 

purpose of identifying the boundaries of skin lesion images [12]. 

The algorithm's primary function is to partition the segmentation 

process into two distinct components: colour quantization and 
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spatial segmentation. A different method for segmenting skin 

lesions is introduced in [13], which utilizes a histogram-based 

clustering estimation (HBCE) algorithm and neuromorphic c-

means clustering methods (NCM) for skin lesion detection. The 

approach under consideration involves the mapping of the picture 

into the neuromorphic domain. Subsequently, an NCM algorithm 

is employed to group the pixels. The number of clusters is then 

estimated using the HBCE algorithm. Finally, lesion 

segmentation is performed based on the intensity and 

morphological properties of the lesion. The authors in [6] have 

suggested a set of thresholding approaches to detect lesion 

borders in dermoscopy images. The authors in [14] have 

suggested techniques for distinguishing between skin and non-

skin colors by employing a piecewise linear decision boundary. 

The proposed methods establish predetermined skin thresholds 

within a specified colour space. The authors of [8] propose an 

automated approach for the segmentation of photos depicting 

skin cancer. This approach involves the conversion of an RGB 

image into an intensity image, followed by the application of 

intensity thresholding to effectively segment the image. In 

addition, the segmentation process is enhanced through the 

utilization of double thresholding. Thresholding is a 

straightforward and efficient method for segmentation. The 

segmentation of photos exhibiting high contrast yields 

satisfactory outcomes. Nevertheless, this approach is also 

ineffective due to its uneven outcomes, since certain photos 

exhibit a lack of distinction between the skin and lesion or a 

diminished contrast. 

The active contour algorithm is a segmentation approach. Active 

contour methods, sometimes referred to as "snakes," are 

extensively employed in the field of picture segmentation [15], 

[16], [17], and [18]. There are two primary classifications for 

active contours: edge-based methods [19] and region-based 

methods [20]. The use of edge information [15], [18] is 

employed in the edge-based method, whereas the region-based 

method relies on region characteristics and directs the active 

contour towards the boundary of an object for segmentation [21], 

[22]. Active contours are a set of procedures that commence their 

operation by establishing an initial contour around the region of 

interest (ROI). This initial contour then undergoes movement and 

cessation at the boundary of the item that is to be segmented. The 

aforementioned approaches incorporate parameters that regulate 

the level of contour smoothness and facilitate its convergence 

towards the central region of interest (ROI). Although edge-

based active contours have the benefit of effectively managing 

intricate shapes, their utilization is hindered by the complexity of 

their parameters. Active contours based on edges are appropriate 

for detecting lesions [15], [18]. However, their efficiency is 

diminished in cases where the borders of an image exhibit 

smoothness.  Likewise, region-based techniques exhibit 

limitations such as the potential for fluctuating values of 

The parameters vary across various images, necessitating a 

higher number of iterations. Additionally, the size and 

coordinates of the starting contour are altered by each image, 

rendering them susceptible to initialization and rendering the 

segmentation process laborious. The authors Wang et al. have 

introduced an active contour driven by local Gaussian 

distribution fitting energy (LGDF) [23], which encounters similar 

challenges. In contrast to existing region-based active contour 

models [20], [21], LGDF possesses a distinct advantage due to 

the incorporation of local intensity means and variances as 

spatially variable functions. This enables the model to effectively 

differentiate regions characterized by similar means but varying 

variances. 

In the last decade, various neural networks within the field of 

deep learning have been suggested for the purpose of segmenting 

medical images, demonstrating exceptional performance. The 

majority of networks proposed for the task are derived from U-

Net [24], a neural network specifically designed for the purpose 

of biomedical image segmentation. The implementation of these 

networks incurs significant expenses, mostly because to the high 

costs associated with big data and sophisticated equipment, 

rendering them inaccessible to the general population. 

This study introduces a methodology that addresses the 

aforementioned limitations of the LGDF model, namely equation 

(3). In the course of conducting studies on medical images, it was 

observed that the LGDF model had more promising results 

compared to other active contour-based models [20], [18]. 

Additionally, it has been observed that the outcomes of the 

LGDF model can be significantly enhanced with the provision of 

appropriate initial shape. In this research, we present a 

methodology that offers an automated initialization process for 

the model. In order to achieve this objective, we have 

implemented several pre-processing approaches. 

The subsequent section of this work is structured as follows: 

Section 2 of the paper focuses on the relevant literature. Section 

3 introduces the proposed methodology. Section 4 provides an 

explanation of the measurement quantities employed to obtain 

the results. Section 5 offers a comprehensive analysis of the 

experimental findings. Section 5.1 delves into the origin and 

characteristics of the data set utilized in the experiment. Section 

6 serves as a dedicated section for further deliberation. Lastly, 

section 7 concludes the paper with a concluding note. 

II. IDENTIFY, RESEARCH AND COLLECT IDEA 

The utilization of either pre-processing, post-processing, or a 

combination of both techniques has the potential to enhance the 

segmentation of skin images. [25] utilizes both methodologies to 

partition photos that include skin lesions. In the present study, the 

researchers have employed dermoscopy pictures with a 

resolution of 8 bits. Initially, the active contour was chosen 

during the pre-processing phase, serving the purpose of 

extracting the region of interest. The subsequent phase of the 

process is colour improvement, which is subsequently followed 

by grey thresholding, hair removal, and the elimination of dark 

corners from the image. The final stage of the pre-processing 

procedure involves using Cohen-Daubechies-Feauveau 

biorthogonal wavelets to segment the image [26]. Finally, during 

the post-processing stage, morphological techniques were 

implemented to obtain the ultimate segmented outcome. The 

aforementioned procedures are utilized to address potential voids 

within the segmented lesion area. The methodology that was 

proposed demonstrated an average true detection rate (ATDR) of 

93% and an average false positive rate (AFPR) of 5.43%. This 

study utilizes dermoscopy images from a pH data set to conduct 

the experiment. 

The comparison between two segmentation techniques, namely 

active contour and fuzzy clustering based on region growth 
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(FCR), was conducted by the authors in reference [27]. Prior to 

utilizing the input images for skin image segmentation, they 

undergo pre-processing. The pre-processing procedures involve 

converting RGB to grayscale and then selecting only the blue 

colour channel. Additionally, image filtering is performed to 

remove hair and smooth the image. Furthermore, dark spots in 

the corners of the photos are detected. The segmentation results 

of the two algorithms were compared, revealing that the FCR and 

active approaches achieved high accuracy rates of 97.6% and 

96.4% respectively. 

A study conducted by [28] presents a comparison of the 

outcomes of six segmentation methods on melanoma photos 

obtained from the clinical database of Hospital Pedro Hispano, 

Mousinho’s, Portugal. Prior to the application of the procedures, 

pre-processing techniques have been employed. Segmentation. 

During the initial phase of data processing, a morphological 

closure filter was employed to eliminate characteristics 

associated with black hair. Subsequently, the dark corners 

present in the photos were eliminated by gray-level thresholding 

utilizing Otsu's method. Subsequently, the binary components 

associated with the terminal points of the images were removed. 

A comparative analysis was conducted on six segmentation 

methods, namely gradient vector flow (GVF), the level set 

method of Chan et al. (C-LS), adaptive thresholding (AT), 

adaptive snakes (AS), EM level set (EM-LS), and fuzzy-based 

split and merge algorithms (FBSM). The findings indicated that 

the AS and EM-LS methods exhibited superior performance in 

terms of true detection rate (TDR), with values of 95.47% and 

95.20% respectively. A TDR of 93.67% was attained by the 

FBSM. The researchers have reached the conclusion that the AS 

and EM-LS techniques exhibit more robustness and use in the 

segmentation of lesions within a computer-aided diagnosis 

system. 

In the study conducted by [29], a rapid and fully automated 

technique is introduced for the purpose of segmenting skin 

pictures that contain lesions. The method under consideration is 

divided into four distinct stages: artefact elimination and picture 

standardization, skin identification, lesion delineation, and 

consolidation. The authors offer a strategy called HBCENCM, 

which utilizes the histogram-based clustering estimation (HBCE) 

algorithm. This algorithm is necessary for determining the 

optimal number of clusters in the neuromorphic c-means 

clustering (NCM) method [13]. The detection of a skin lesion 

relies on the assessment of its intensity and morphological 

characteristics. Their average accuracy on the ISIC 2016 data set 

is 96.3%. 

Sectioning and categorization are performed in reference [30]. 

The present study is structured into four distinct phases. Initially, 

there was the application of filtering and contrast enhancement 

techniques. Additionally, an assessment is conducted on 

segmentation, thresholding, and statistical features in order to 

identify the presence of the lesion. Entropy and bi-fold are 

employed in the third step to compute feature extraction and 

asymmetry. The ultimate phase entails the process of 

classification. The proposed methodology is implemented on a 

dataset consisting of 200 dermoscopy images. The obtained 

outcomes demonstrate an average accuracy of 90%, sensitivity of 

85%, and specificity of 92.22%. The authors in reference [31] 

have examined two distinct techniques designed for the 

identification of melanomas in skin pictures. The initial approach 

employs global techniques to categorize skin photos, while the 

subsequent approach utilizes local characteristics and a bag-of-

features classifier. 

After performing pre-processing techniques such as contrast 

enhancement, anisotropic diffusion, and hair removal using a 

morphological filter, the segmentation process in [7] involves the 

utilization of geodesic active contours. In a similar vein, [32] 

presents a geodesic active contour (GAC) technique that draws 

inspiration from biology to segment lesions in skin pictures. In 

reference [18], gradient vector flow (GVF) snakes are also 

employed. This system is designed to autonomously identify the 

boundaries of skin lesions in dermoscopy images. This approach 

incorporates an automated initiation technique to achieve 

complete automation of the process. 

III. PROPOSED WORK 

In this section, we elucidate our methodology, which enhances 

the efficiency and resilience of the LGDF model, as represented 

by equation (3), during the initialization process. Several pre-

processing approaches were employed for this objective. The 

workflow, as depicted in Figure 4, is outlined as follows. 

A. ROI Extraction 

We transform an RGB skin picture with lesions to grayscale first. 

Draw a rectangular or square mask around the lesion to extract 

the region of interest. The mask extracts the lesion and excludes 

the rest. Extra regions are removed to avoid illumination effects 

that could compromise segmentation. MATLAB (R2017b) built-

in imcrop tool extracts ROI. Figure 1 shows ROI extraction 

cropping the rectangular figure. The clipped image is utilised for 

rough segmentation. 

 

 

 

 

 

 
Figure 1: Extraction of Region of Interest (ROI) shown in the 

blue bounding box. 

 

 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                                     ISSN: 1673-064X   

http://xisdxjxsu.asia                                                    VOLUME 20 ISSUE 03 MARCH 2024                                                                165-174 

B. Segmentation 

After extracting the ROI from a picture, we use the k-mean 

clustering approach to rough segment the ROI lesion. K-means 

clustering segments images unsupervised [33, 34]. K-mean 

clustering segments images into classes by k distinct clusters. We 

start with k = 2 and discover cluster centers. Each pixel in the 

region is classed by Euclidean distance from the cluster center 

[35]. P (x, y) is a ROI pixel and ck is the cluster center. Calculate 

the distance as follows. 

 
After classifying all pixels, we recalculate the cluster centroid 

until it meets the tolerance or error value. Recalculation uses this 

equation. 

 
In order to obtain a segmented image, a classified pixel is first 

reshaped into an image format depicted in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Morphological Operations and K-means clustering 

results. 

C. Morphological Operation 

Figure 2 shows that k-mean segmentation leaves holes in the 

approximately segmented region. We fill the voids with repeated 

morphological processes. These actions use three built-in 

MATLAB (R2017b) commands: imclose, imfill, and strel. Our 

method fills the gaps (background pixels) in the segmented ROI 

with one imfill cycle [36]. We fill huge gaps with a 10-pixel disc 

structural element and the strel command [37]. This structure 

element closes morphological activities in imclose. Dilation 

followed by erosion with the same structuring element creates a 

closed image. Another imfill cycle covers further flaws; Figure 2 

displays morphological procedures. 

Figure 3. Developed Methodology flowchart. 

Boundary extraction from the morphological operation image is 

utilized to create the LGDF model's initial contour, explained 

next. A morphologically segmented image instead of a triangle, 

circle, rectangle, or square is used to start the LGDF. 

 

D. LGDF Model 

The Wang et al. [23] active contour model uses local Gaussian 

distribution fitting (LGDF) energy to segment the skin lesion. 

The model uses more complicated statistical properties of local 

intensities to characterize the distribution of local intensity 

information via neighborhood partitioning. LGDF's energy 

function is 

 

In the preceding equation, Ω1 and Ω2 represent regions inside 

and outside, respectively, the zero-level set of φ. Here, a local 

circle region is taken by using x as a pixel point, and the region is 

further divided into N number of sub-regions, {Ω𝑖}𝑖=1
𝑁  , which are 

disjoint [38]. In the ith sub-region, a pixel pointy is taken with 

the intensity I(y), and its posteriori probability is used, which is 

denoted by pi,x (I(y)).ω(x − y) is a weighting function that relies 

on the length of the space between the two points, x, and y.  

Regularization terms are the first two terms, along with the non-

negative terms µ and ν. The first is called the “distance 

regularizing term”, which is used to ensure stable evolution of 

the level-set function φ [39]. The second term is known as the 

length regularizing term, which regularizes the zero-level contour 

of φ. The coefficients λ1 and λ2 are positive constants that are 

used for controlling movement of the contour. If the contour 

must contract towards its center, then λ1 is assigned a greater 

value than λ2, and in the other case, λ2 is taken as greater. The 

posteriori probability and weighting function are given by: 

 

 

 

𝐸𝐿𝐺𝐷𝐹 𝜙, 𝑝1,𝑥 ,𝑝2,𝑥  = 𝜇∫Ω  
1

2
(|∇𝜙| − 1)2 d𝑥 + 𝜈∫Ω  𝛿휀(𝜙)|∇𝜙|d𝑥

 −𝜆1∫Ω    ∫Ω1
 𝜔(𝑥 − 𝑦)log𝑝1,𝑥(𝐼(𝑦))𝐻𝜖(𝜙(𝑦))𝑑𝑦 𝑑𝑥

 −𝜆2∫Ω   ∫Ω2
 𝜔(𝑥 − 𝑦)log𝑝2,𝑥(𝐼(𝑦)) 1 −𝐻𝜖(𝜙(𝑦)) 𝑑𝑦 𝑑𝑥

        (3) 
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i 

 

 

where ui(x) represents local intensity means and σi(x) represents 

standard deviations. a is used as a constant in such a way that 

∫𝜔(𝑑) = 1. The d represents the distance between x and y, and σ 

> 0 is a scaler parameter. The value of the weighting function 

becomes zero if d is greater than the radius of the neighborhood 

around the pixel point x. A smoothing function HE is typically 

used as an approximation for the Heaviside function H, which is 

denoted as: 

 

 

The derivative of the smooth function, 𝐻𝜖, is the smoothed Dirac 

delta function, given as: 

 

The following Euler-Lagrange equations are satisfied by the 

parameters ui and σ2, which minimize the energy functional, Eq. 

(3): 

 

These two, Eq (10) and Eq (11), are used for energy functional 

minimization with fixed ϕ. The gradient descent flow equation 

for minimization of the energy function with respect to ϕ is [40] 

 

The Dice similarity coefficient (DSC) and Jaccard Index are used 

for comparison. This statistic, known as the Sorensen Dice 

coefficient [41], measures the similarity and difference of two 

objects. The initial purpose was to compare two discrete data 

sets; later, it was used to compare ground truth and segmented 

images in image processing. The equation (16) for DSC is two 

times the intersection of the segmented picture and ground truth 

over the sum of their cardinalities. Jaccard Similarity coefficient 

(JI), established by Jaccard Paul [42], measures variety and 

similarity between ground truth and segmented picture. The 

intersection of the objects over their union yields the equation 

(15) for JI. If SI is the segmented image and GT is the ground 

truth, JI and DSC are: 

 

 

 

Figure 4: Results of LGDF on melanoma skin images from I/P 

image to segmentation. 

Algorithm 1 Algorithm of the proposed method: Steps to be 

followed for implementation of our proposed method. 

Data:  Skin image. 

Result: Segmented image. 

Step I: Convert RGB image to gray. 

Step II: Extract ROI from the image using imcrop command. 

Step III: Apply k-mean segmentation using equations (1) and (2). 

Step IV: Apply morphological operations using matlab 

commands: imfill, imclose and strel of radius 10 and disk shape. 

Step V: Extract boundary of the segmented lesion finding edges 

with find command. Step VI: Put the extracted boundary as an 

initial contour for equation (3) on the image. Step VII: Initialize 

the level set function φ after setting values of parameters: σ, λ1, 

λ2, µ, and ν. 

Step VIII: Using equation (10), (11) and (12) update ui(x), σi(x) 

and φ. 

Step IX: Get the segmented image 

 

 

𝜔(𝑦 − 𝑥) =
1

𝑎
exp  −

|(𝑦 − 𝑥)|2

2𝜎2                                            (5) 
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IV. EXPERIMENTAL RESULT 

We compare our results to the LGDF and LBF, local binary 

fitting model [43], which were applied to the identical images, as 

shown in Figures 6 and 7. Image IDs in Table 2 were randomly 

selected from the data set with ground facts. We kept the LGDF 

(3) settings and iterations the same for all trials utilising our 

technique. Using σ = 3, λ1 = λ2 = 1.0, µ = 1, and v = 0.0005 ∗ 

255 ∗ 255, we fixed 150 iterations. Melanoma pictures had 

average JI and DSC values of 0.9018 and 0.9475 in Eqs 15 and 

16. Table 1 shows average non-melanoma picture JI = 0.9093 

and DSC = 0.9255. We also noted the standard deviation values 

of each image from the mean JI and DSC values for melanoma 

and non-melanoma photos. We found standard deviation values 

of 0.047 and 0.0375 for non-melanoma images and standard 

values of 0.043 and 0.0306 for melanoma images from JI and 

DSC mean values. To achieve optimal results for LGDF and 

LBF, we used different iterations for each image: σ = 3, λ1 = 

1.03, λ2 = 1.0, µ = 1, and v = 0.0005∗255∗255 for LGDF, and σ 

= 3, λ1 = 1.0, λ2 = 1.5, β = 1, and ν = 0.005 ∗ 255 ∗ 255 for LBF 

experiments. Table 1. Average JI and DSC results on melanoma 

and non-melanoma pictures using LGDF and LBF models. 

Table 2: The first and third rows reveal our paper values. Second 

and fifth rows show melanoma image identification numbers 

(IDMI), whereas third and last rows show non-melanoma image 

identification numbers (IDNMI). 

 

Figure 7: Results of our method on melanoma skin images, 

where column: (a) input images (b) results of k-mean clustering 

(c) results of morphological operations (d) final contours (e) 

ground-truth and (f) segmentation results. 

 

Figure 7: Results of our method on non-melanoma skin images, 

where column: (a) input images (b) results of k-mean clustering 

(c) results of morphological operations (d) final contours (e) 

ground-truth and (f) segmentation results. 

Table 1: Comparison of results of the proposed approach 

with LGDF and LBF model. 

 Melanoma 

JI DSC Iterations Time(sec) 

Our Method 0.9018 0.9475 150 47.25 

LGDF 0.7564 0.8559 2070 742.33 

LBF 0.5714 0.7208 320 83.88 

 Non-melanoma 

 JI DSC Iterations Time(sec) 

Our Method 0.9093 0.9255 150 87.22 

LGDF 0.7274 0.8331 1000 363.05 

LBF 0.4156 0.5444 300 778.4 

Table 2: Our paper values are in the first and third rows of the 

table. Second and fifth rows show melanoma image 

identification numbers (IDMI), whereas third and last rows show 

non-melanoma image identification numbers (IDNMI). 

Images 1 2 3 4 

IDMI NM1 SSM21 SSM57 LMM5 

IDNMI 4 46 D41 34 

Images 9 10 11 12 

IDMI SSM1 NM5 SSM14 NM61 

IDNMI 23 10 D33 D11 

Images 5 6 7 8 

IDMI AMM1 NM2 LMM9 NM4 

IDNMI 41 D24 D30 29 

Images 13 14 15  

IDMI SSM31 LMM9 NM83  

IDNMI 25 D54 D16  

Compared to the LGDF and LBF, our initialization method is 

simple, fast, and resilient. Application on any skin picture 

requires one click after selecting the ROI. Comparisons 

demonstrate that our technique outperforms LGDF and LBF 

models. Comparisons are graphed below. 
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Figure 8:  The LGDF and LBF JI values are graphed. Right 

compares fifteen non-melanoma photos, left compares fifteen 

melanoma images. 

Dataset: The photographs are from DermIS 2 and DermQuest 

3, which comprise melanoma and non-melanoma skin scans. 

Ground truth images of 89 melanoma and 26 non-melanoma 

are in the DermIS. DermQuest has 76 melanoma and 61 non-

melanoma pictures and ground truths. Visit 

https://uwaterloo.ca/vision-image-processing-lab/research-

demos/ skin-cancer-detection to view the database. 

V. DISCUSSION 

We developed a semi-automatic approach to segregate melanoma 

and non-melanoma skin lesions. The method accelerates the 

sluggish process of active contours with unknown regular size 

and position of the initial contour and the number of iterations 

needed to get the final contour. Figures 4(b) and 5(b) show that 

the first contour shape and size vary depending on the skin lesion 

structure. LGDF and LBF models have various iterations for 

each image. Table 1 shows that both techniques have more 

iterations than the suggested methodology, which is constant and 

less for each image. 

 
Figure 9:  Graphical comparison of LGDF, LBF, and our 

approach's DSC value. The left compares fifteen melanoma 

photos, whereas the right compares fifteen non-melanoma scans. 

 

Second, it works even with image lighting effects, which can 

drastically reduce segmentation accuracy. Using K-mean 

clustering to categorise and partition pixels into skin lesions and 

background, The lighting effect misclassifies background pixels 

within lesions when analysed alone, as seen in Figure 2(a). It is 

an intermediate aspect of our research. Our methodology yields 

results without misclassifications and higher segmentation 

accuracy, as illustrated in Figures 6(f) and 7(f). Table 1 shows 

higher Dice and Jaccard coefficients for our technique than 

LGDF and LBF. 

Rough segmentation by k-mean clustering gives our 

LGDF model its initial outline. As illustrated in Figure 10, 

segmentation is done using k values from [2:9] to [2:11]. In k-

mean clustering, increasing k has various effects on each image. 

We found from thorough investigation with different k values 

that increasing k after a certain limit in each image worsens 

segmentation outcomes. Sometimes background skin pixels are 

segregated as lesion pixels. The ideal k value for each image 

scenario is unpredictable and can only be determined visually. 

We found Segmentation findings are appropriate for k = 2, but 

when skin pixels merge with lesion pixels, segmentation results 

worsen. 

As k in k-mean clustering increases, different lesion hues 

become clusters. Some lesion shade intensities match the 

backdrop, or skin intensity pixels. Lesion-skin intensity matches 

create empty spaces that can be filled with morphological 

operations. The k-mean clustering utilized here segments lesions, 

not classifies lesion hues. Most often, k = 2 is best for extracting 

the lesion's outer perimeter. We increase segmentation outcomes 

if holes from pixels inside a lesion match a skin lesion or if 

illumination brightens center pixels utilizing morphological 

techniques. If matching lesion pixels with skin are at the 

boundary or there is a little intensity difference, segmentation 

results are tough to improve. A big structuring element radius 

improved this problem in our technique. 

 
 

Figure 10: Example demonstrates k-mean clustering results for 

varied k values. 

The disc covers more pixels at the lesion boundary and removes 

fewer holes than the structuring element. With a reduced radius, 

lesion holes may not fill entirely. A big radius is ideal for both 

huge holes after k-mean clustering and merged lesion and skin 

pixels at the boundary. If k-mean clustering results improve with 

a higher k parameter, it compensates for loss when k=2. The 

structural element radius is likewise limited. Figure 12 shows 

that increasing the radius beyond a certain limit merges incorrect 

pixels, reducing segmentation quality. We utilized k = 2 and a 

structuring element of radius 10 for rough segmentation based on 

these results. 

For dermoscopy picture segmentation using JI and DSC metrics, 

various methods have been presented. Our method exceeds theirs 

by much. Similar to the Artificial Bee Colony (ABC) Algorithm 

in [44], the suggested method is applied to a DermIS data set 

with melanoma images. The average DSC and JI values are 

0.9173 and 0.8356, compared to our 0.9373 and 0.9018. 

Similarly, an active contour-based segmentation approach [45] 

found an average DSC value of 0.8017 for PH2, a dataset of 

nevus and melanoma skin pictures. These two skin image 

segmentation methods are cutting-edge. Many other methods 

with similar outcomes and measurement values are available 

[46], [25]. We have an advantage over them due to this approach 

results. 
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Figure 11: Example shows results for different sizes of the disk 

and structuring element.  

 

VI. CONCLUSION  

The purpose of this research is to present a novel approach that 

aims to reduce the computational burden, the dependence on 

precise initial contour placement within the Region of Interest 

(ROI), and the requirement for parameter adjustment across a 

variety of experiments that are inherent in the Local Gaussian 

Distribution Fitting (LGDF) model. A number of preprocessing 

processes are included in our methodology. These procedures 

include the extraction of the region of interest (ROI), which is 

then followed by the use of k-means clustering in order to create 

an initial segmentation of the lesion inside the ROI. Following 

the first segmentation of the region, subsequent morphological 

procedures are carried out in order to fill in any gaps or 

abnormalities that may have been present. A contour is then 

determined based on the border of the rough segmentation, which 

serves as the initial contour for the LGDF model. This contour is 

an initial contour. 

 The strategy that we have developed is intended to 

simplify the segmentation procedure and lessen the amount of 

computational complexity that is associated with the LGDF 

model. The goal of this project is to improve the accuracy and 

efficiency of skin lesion segmentation by automating the 

initialization of the model and applying morphological 

refinement. A comparative analysis was performed against both 

the LGDF model and the Local Binary Fitting (LBF) model in 

order to demonstrate the effectiveness of our suggested 

methodology through experimental evaluation. The results 

indicate that our method performs better than these models in 

terms of the accuracy of segmentation and the efficiency with 

which it uses computational resources. In addition to highlighting 

the potential of our technology for clinical applications in 

dermatology, this superiority demonstrates that our method is 

effective in precisely outlining skin lesions.  

The findings of this work make a contribution to the ongoing 

efforts that are being made to develop enhanced segmentation 

techniques for medical imaging applications, particularly in the 

field of skin cancer diagnosis and treatment planning. It is 

possible that future research endeavors will concentrate on 

further refining the approach that has been provided and 

expanding it to accommodate a wide variety of datasets and 

lesion characteristics. This will ultimately lead to an 

advancement in the state of the art in computer-aided diagnosis 

systems for dermatological applications. 
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