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Abstract- This research paper aims to advance the clinical applicability of Force Myography (FMG) technology, 

particularly for the benefit of individuals with disabilities. FMG is employed to map muscle deformation resulting 

from gesture recognition, utilizing force-sensing resistors mounted on a flexible band wrapped around a person's area 

of effect to detect muscle stiffness. Even residual limbs with minimal muscle tissue can facilitate effective human-

machine interfaces for appropriate actions using FMG. 

Machine learning algorithms play a critical role in providing highly accurate results. Despite significant progress in 

precision over the past two decades, there remains a substantial gap between laboratory testing and clinical trials. This 

paper seeks to address this disparity by exploring methods for enhancing FMG performance outside of controlled 

laboratory environments, thereby improving its potential for real-world applications and positively impacting the lives 

of disabled individuals. 

Index Terms- Disabled, Force-Sensing-Resistors, FMG, Gesture recognitions, Machine Learning 

 

I. INTRODUCTION 
 

T 

he loss of a limb profoundly impacts individuals, who often seek assistance from prosthetics clinics. Popular bionic 

hands like Otto Bock's Michelangelo hand, Touch Bionics' i-Limb, and Steeper Group's Bebionic3 are available, but 

their utilization remains low due to cost and usability issues. 

Current methods, like sEMG, face challenges due to cost and signal quality degradation over time. Force 

Myography (FMG) emerges as a promising alternative, offering durability and sweat resistance. However, FSR 

values inconsistency during daily activities poses a significant challenge for trans-radial amputees, leading to 

dissatisfaction and abandonment of prosthetics. 

This research aims to develop a robust system capable of interpreting user intent accurately despite FSR 

fluctuations. Objectives include analyzing muscle contractions' impact on FSR readings, optimizing FSR sensor 

placement, employing advanced signal processing and machine learning techniques, and exploring sensor fusion 

approaches. The proposed system aims to enhance control accuracy and improve the quality of life for amputees 

relying on robotic prosthetics. 

In summary, this research focuses on implementing an efficient FMG system to classify limb positions and 

movements accurately, addressing the challenges faced by trans-radial amputees and advancing prosthetic control 

systems. 
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II. ADVANCEMENTS IN THE FMG-BASED PROSTHETIC CONTROL: OVERCOMING CHALLENGES 

AND MEETING USER NEEDS   

 
This literature review aims to summarize existing research on Force Myography (FMG) techniques and their 

application in prosthetic development, particularly for trans-radial amputees. 

Limb loss is a significant global health concern, with estimates suggesting a rise to 3.6 million cases in the United 

States by 2050. Upper limb amputations, especially trans-radial ones, pose unique challenges for rehabilitation and 

prosthetic development. 

The Be Bionic i-limb prosthesis, developed by Össur, is an advanced device designed to replicate human hand 

functionality and appearance. Featuring individually powered fingers, including an articulating thumb, it offers 

exceptional dexterity and grip strength. Myoelectric signals from residual muscles control its movements, enabling 

precise finger and thumb control. 

A key feature is its adaptability to various grip patterns and hand positions, with pre-set options like pinch, power 

grip, or key grip. Users can customize settings through mobile apps, enhancing usability. Moreover, cosmetic 

coverings closely resemble natural hands, boosting comfort, confidence, and integration into daily life. 

In conclusion, the Be Bionic i-limb prosthesis offers a highly advanced, customizable solution for upper limb 

deficiencies or amputations. Its myoelectric technology, coupled with multiple grip patterns and aesthetic 

considerations, ensures exceptional functionality and user acceptance. 

 

III. HARNESSING FMG TECHNOLOGY FOR DYNAMIC MOVEMENTS: DESIGN AND HARDWARE 

FRAMEWORK   

This study aims to address the challenges of dynamic movements using force myography (FMG). It involves 

designing an FMG band, collecting data with force-sensitive resistors (FSRs) and an inertial measurement unit 

(IMU), and training a machine learning model for limb position and movement classification. 

In recent years, custom FMG bands tailored for specific applications have emerged. The band is adjustable and 

features durable outer material and soft inner lining for comfort. A single FSR, strategically positioned to target 

forearm muscles, allows precise detection of muscle contractions, enhancing limb movement representation. 

The custom FMG band includes a buffer circuit for FSRs, connected to the Arduino Portenta H7 microcontroller, 

ensuring accurate and stable readings. Additionally, a 3.7-volt battery and Bluetooth HC-06 module are integrated 

for long-lasting power and wireless data transmission. 

The Arduino Portenta H7, with its dual-core Cortex-M7 and Cortex-M4 microcontrollers, is ideal for acquiring 

signals from both the MPU6050 IMU and FSRs. The IMU, MPU-6050, measures acceleration and rotation, 

enhancing gesture recognition accuracy. A moving average filter smoothens accelerometer data, improving accuracy 

further. 

Machine learning techniques, particularly the random forest classifier, are employed for limb position prediction. 

Supervised learning with a training dataset enables accurate prediction, crucial for real-time applications. The 

trained model is loaded onto the Portenta H7 microcontroller for real-time control of the prosthetic device. 

Performance comparison reveals the effectiveness of the random forest classifier compared to other methods like 

Linear Discriminant Analysis and Support Vector Machines. Despite their advantages, the random forest classifier is 

chosen for its ability to handle large datasets and provide accurate results. 
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Validation on the experimenter's hand yields over 98% accuracy. Further validation may involve testing on other 

participants and assessing robustness under various conditions. 

In conclusion, this chapter explores the design, development, and implementation of an FMG system for dynamic 

movement detection and classification. By optimizing design, hardware, and software components, it lays the 

foundation for improved prosthetic control using FMG technology, ultimately enhancing the lives of amputees. 

 

IV. COMPREHENSIVE ANALYSIS OF PROSTHETIC CONTROL: DATA COLLECTION AND 

PERFORMANCE EVALUATION   

The study involved collecting data on four limb positions: Stationary, Butterfly, Flag, and Bend/Fold. Force-

sensitive resistors (FSRs) and an inertial measurement unit (IMU) were used to collect data both statically and 

dynamically. A moving average filter improved accelerometer data quality during acquisition. 

In the stationary position, the arm is relaxed, serving as a baseline for the FMG system. The lateral extension, 

represented by the Butterfly position, engages shoulder and upper arm muscles, crucial for accurate gesture 

classification. The Bend/Fold position deactivates FSRs to prevent false signals during arm compression. 

The FMG system achieved 95% accuracy in dynamic testing, focusing on real-world scenarios. Four limb positions 

facilitated gesture control system operation, adjusting FSRs in real-time based on muscle contractions and arm 

position. A low delay time (<300 milliseconds) ensured a comfortable user experience.  
The confusion matrix evaluated the classifier's performance. Most predictions were correct, with some 

misclassifications between positions 1 and 3, suggesting areas for improvement. 

 
 

In conclusion, Chapter 4 examined data collection methods and outcomes, emphasizing the development of an 

effective prosthetic control system. The confusion matrix analysis provided insights into system performance, 

highlighting its potential for practical applications in upper limb prosthetics, with implications for improving quality 

of life for amputees. 
 

V. CONCLUSION AND FUTURE SCOPE OF THE PROJECT   

 
The study aimed to enhance prosthetic limb control during dynamic movements using force myography (FMG). A 

custom FMG band with FSRs and an IMU was designed, and a Random Forest model was trained to classify four 

limb positions: Stationary, Butterfly, Flag, and Bend/Fold. 
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The high accuracy of over 98% on the experimenter's hand demonstrates the FMG technique's potential for precise 

limb movement detection, even during dynamic activities. The confusion matrix showed minimal misclassifications, 

indicating the model's ability to distinguish between limb actions accurately. 

The moving average filter improved accelerometer data quality, contributing to overall system accuracy. 

Implementing the trained model on the Portenta H7 microcontroller enabled real-time prosthetic control, showcasing 

the approach's practicality. 

Future research could involve testing on a larger, diverse group, exploring long-term system reliability, and 

investigating alternative machine learning algorithms for improved accuracy. Integrating EMG sensing could 

enhance system robustness. 

In summary, this study showcased FMG's potential combined with machine learning for prosthetic control during 

dynamic movements, paving the way for advanced, user-friendly prosthetic devices. 

 

The study focused on refining prosthetic limb control during motion using FMG. A custom FMG band was crafted, 

leveraging FSRs and an IMU, while a Random Forest model was trained to classify four limb positions. Achieving 

over 98% accuracy on the experimenter's hand underscored FMG's precision, even in motion. The confusion matrix 

revealed few misclassifications, validating the model's accuracy. A moving average filter bolstered accelerometer 

data quality, aiding real-time control via the Portenta H7 microcontroller. Future directions include broader testing, 

exploring alternative algorithms, and integrating EMG sensing for improved robustness. This research marks a 

significant step toward more sophisticated prosthetic control systems, promising enhanced user experiences. 
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