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Abstract- Deep learning has become a cornerstone of 

modern stereo matching algorithms due to its ability to accurately 

model scene geometry. Disparity estimation varies depending on 

the specific constraints of each application: some methods rely on 

recurrent architectures to dynamically refine predictions by 

focusing on uncertain regions, while others exploit multi-scale 

strategies, processing images at different resolutions to capture 

fine details in visually complex environments. 

In this context, we propose WS-CRNN, a hybrid 

architecture that combines the reactivity of recurrent refinement 

with the structural richness of multi-scale analysis. At the core of 

the model, the wavelet scattering transform robustly extracts both 

local and global features at multiple scales, while substantially 

reducing the dimensionality of cost volumes, thus alleviating the 

computational overhead typically associated with 3D 

convolutions. 

In parallel, a recurrent neural network iteratively 

enhances disparity predictions through successive comparisons of 

left and right views, enabling precise hierarchical estimation. 

Compared to state-of-the-art methods, WS-CRNN achieves 

competitive performance while maintaining low memory and 

energy consumption. Overall, WS-CRNN represents a promising 

trade-off between algorithmic complexity and prediction quality, 

marking a significant step forward in the field of deep stereo 

vision. 

Index Terms- Deep learning, Stereo matching, Wavelet 

scattering, CNN, RNN, ConvLSTM, Multi-scale, Matching cost 

volume, Disparity map. 

1. INTRODUCTION 

Human vision fundamentally differs from computer 

perception. The eye captures light, and the brain processes the 

information to interpret shapes, colors, and depth. Computer 

vision aims to replicate these capabilities by enabling machines to 

understand their environment from images. One of the major 

challenges in this field is 3D reconstruction from stereoscopic 

images, which relies on disparity estimation between two views of 

the same scene. It is also important to note that the quality of 3D 

reconstruction heavily depends on the accuracy of stereo 

matching. Therefore, this process is considered a complex and 

crucial task in computer vision. 

The development of stereo matching algorithms remains 

one of the most challenging problems. Stereo matching has been 

the subject of active research, with numerous authors proposing 

various approaches and algorithms. Consequently, in their paper 

[1], H. Mohd Saad et al. presented a survey on algorithms related 

to stereo matching. According to this preliminary survey, two 

major frameworks are identified in the current development of 

stereo matching algorithms: traditional methods, including local 

and global techniques based on energy minimization, and artificial 

intelligence-based methods, notably convolutional neural 

networks (CNNs). It appears that most traditional methods are 

significantly less accurate than AI-based methods. 

Another survey by T. Fabio, B. Luca, and P. Matteo [2] 

on deep stereo matching identifies several categories of 

architectures, each based on specific key concepts. These 

categories illustrate the evolution of deep stereo matching 

techniques and the progress made in this area. 

In their study [3], Zhou K., Meng X., and Cheng B. 

explore both traditional and modern deep learning-based methods 

for stereo matching, along with the challenges associated with 

applying these techniques in real-world scenarios. They classified 

deep learning approaches into three categories: end-to-end 

models, Siamese networks, and Generative Adversarial Networks 

(GANs). 

From this, we can conclude that, currently, end-to-end 

disparity estimation methods based on stereoscopic systems 

[1][2][3][4] achieve significantly superior results compared to 

classical methods [5]. 

Deep learning-based disparity estimation methods 

involve creating a high-dimensional (4D) cost volume [6][7][8] 

that covers the entire disparity range. This volume must then 

undergo complex filtering, typically using 3D convolutional 

layers, to extract correspondences and generate an accurate 

disparity map. However, these approaches present limitations due 

to their high memory consumption, computational complexity, 

and large number of parameters, which can slow down 

predictions. 

To overcome these challenges, DeepPruner [9] proposes 

a solution by reducing the search range, which decreases the cost 
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volume's dimension and allows for refinement to improve 

accuracy. Another solution is proposed by the MSDE method [10], 

designed end-to-end, which uses features extracted at different 

scales to build cost volumes, progressively reducing the search 

range at higher scales. 

All of the aforementioned studies have inspired us to 

develop a new model in this context, aiming to address some 

issues related to stereo matching. We propose the WS-CRNN 

approach, which combines two powerful techniques: wavelet 

scattering and the combined use of convolutional neural networks 

(CNNs) and recurrent neural networks (RNNs). This is a multi-

scale disparity estimation model, designed end-to-end, extracting 

features at different scales and leveraging them to generate multi-

scale cost volumes. 

To reduce the dimensionality of the global cost volume, 

we first establish a cost volume at a coarse scale considering the 

maximum search range. This range is then projected by bilinear 

interpolation to a higher scale, while generating preliminary cost 

volumes. To improve efficiency, a ConvLSTM is applied to the 

cost volume. This allows the spatial and temporal dependencies to 

be processed line-by-line for refining the matching result before 

disparity map regression. 

The main contributions of this work are: 

1. We describe how to use wavelet scattering for extracting 

spatial features at different scales from two rectified 

stereoscopic images, and then decompose them at various 

resolutions to construct a multi-resolution image 

pyramid. 

2. Once the features are extracted, we calculate a cost 

volume that represents the differences between the 

features extracted from the left and right images. 

3. After the generation of the cost volume, a ConvLSTM is 

applied to handle the spatial and temporal dependencies 

line-by-line, refining the matching result while 

maintaining the performance of the cost volume feature 

aggregation. 

4. The output of the ConvLSTM enables the prediction of 

the disparity map at each resolution level. The predicted 

disparity maps will be used to learn error maps, which 

constitute the output of the comparison. 

5. Finally, using an evaluation protocol, we analyze the 

performance of the approach and assess its robustness. 

 

 

2. Related Work 

Over the years, various algorithms and techniques have 

been developed for disparity estimation. These methods can be 

broadly classified into two categories: traditional algorithms and 

deep learning-based algorithms. Most traditional algorithms 

follow four main steps: 

• Matching cost calculation 

• Matching cost aggregation 

• Disparity computation and optimization 

• Disparity refinement 

Deep learning-based algorithms, particularly 

convolutional neural networks (CNNs), have first altered the 

matching cost calculation by leveraging deep features instead of 

traditional ones. More recently, the four steps of classical 

algorithms have been replaced by end-to-end architectures that 

handle the entire process. Thus, learning-based methods are 

classified into three categories: sub-region methods, end-to-end 

methods, and multispectral methods [1]. 

The work presented in paper [1] compares prior research 

integrating the CNN-based approach with traditional algorithms 

for the standard stereo pipeline. The authors agree that the works 

of Zbontar and LeCun [11][12] have served as a reference for 

many researchers applying CNNs to the matching cost 

computation. Seki and Pollefeys [13] introduced SGM-Nets, a 

learning-based disparity estimation method, whose results surpass 

those of manually tuned SGM [12], confirming the usefulness of 

learning to enhance performance. 

End-to-end learning algorithms based on CNNs are 

further categorized into encoder-decoder architectures and 

methods based on learning regularities for 3D convolutions [3]. 

Encoder-decoder models such as iResNet [14], DispNetC [15], 

and CRL [16] use two sub-networks to estimate and regularize 

disparity maps. However, these methods suffer from a large 

number of parameters and inaccurate estimation in occluded and 

textureless regions. To improve performance and reduce the 

complexity of the cost volumes, EdgeStereo [17] and DeepPruner 

[9] were introduced. EdgeStereo uses a shallow edge detection 

sub-network, while DeepPruner applies the PatchMatch method to 

reduce the size of the cost volumes. MCliqueNet [29] has been 

proposed for feature extraction in stereo disparity estimation, and 

its efficiency has been demonstrated. In contrast to these 

approaches, MSDE [10] uses the encoder-decoder architecture 

only in the feature extraction module while optimizing the model 

size through multi-scale disparity estimation and the integration of 

residual disparity, thus offering a more efficient and accurate 

solution. 

Other methods based on learning regularities for 3D 

convolutions apply 3D convolutions to 4D cost volumes, 

composed of height, width, features, and disparity values [18]. 

Although these methods offer better performance than previous 

approaches [14][15][16], they require more memory and 

computational resources, thus increasing inference time. Among 

these methods are PSMNet [8], GA-Net [20], GWCNet [21], 

SCVNet [22], GCNet [23], and PDSNet [24]. LRCR [19] proposes 

an innovative end-to-end approach using two parallel LSTM 

networks [25], but this technique takes considerable time to 

estimate disparity maps. 

To reduce inference time, lightweight models such as 

ESNet [26] and StereoNet [7] decrease the number of 3D 

convolutions. StereoNet uses only five convolutions to estimate an 

initial disparity map after downsampling the images, while 

AnyNet [27] applies a residual disparity map in three stages. 

LEAStereo [8] proposes a hierarchical neural architecture search 

(NAS), improving accuracy. However, all of these methods still 

require high-dimensional 4D cost volumes and numerous 3D 

convolutions, increasing their resource consumption. In 

comparison, the MSDE approach [10] reduces computations by 

leveraging low-dimensional cost volumes at different scales. 

Cost volume filtering is crucial for eliminating noise from 

the generated volumes, but it requires significant computational 

resources and memory-intensive 3D convolution layers to 

aggregate 4D cost volumes. This is why, in the GA-Net method 

[20], the number of convolutions is reduced, and refinement 
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blocks are added to improve accuracy, although this results in a 

loss of speed. A method frequently used in CNNs, proposed by He 

K, Zhang X, Ren S, et al. [28] and adapted to ResNet, decomposes 

3D convolutions into two parts: the 2D convolution for the spatial 

component and the 1D convolution for the temporal component. 

This method has been adapted by MSDE [10] to optimize cost 

volume filtering by replacing 3D convolutions with 2D and 1D 

convolutions. 

In the context of the WS-CRNN method, we use the 

encoder-decoder structure in the feature extraction module, rather 

than applying it at each step of the disparity estimation pipeline. 

This approach allows for the design of a more compact model, 

thanks to multi-scale disparity estimation, improving the accuracy 

and efficiency of the task. The WS-CRNN model generates low-

dimensional cost volumes across multiple scales, thereby reducing 

the computations required for filtering. Furthermore, to refine the 

matching results, a ConvLSTM recurrent neural network (RNN) 

is used to process spatial and temporal dependencies line-by-line, 

capturing complex relationships. This step improves the quality of 

disparity predictions. The output of the RNN is then used to 

predict the final disparity map, providing a more accurate depth 

estimation. 

 

3. Architecture of the Proposed Approach 

 

Our WS-CRNN approach generates a dense disparity 

map from two rectified stereo images as input, having the same 

dimensions, defined by height H and width W. To achieve this, we 

adopted a hierarchical approach aimed at establishing the 

correspondence between each pixel of the left image and its 

counterpart in the right image (and vice versa, from the right image 

to its counterpart in the left image). 

Our architecture consists of the following steps: 

1. Feature Extraction: We used wavelet scattering to extract 

information at different scales from the two stereo images 

(left and right). 

2. Pyramid Network: We constructed an image pyramid 

from the feature maps obtained in the previous step. 

3. Cost Volume (PCV – ACV): From the feature maps 

obtained at different levels, we computed a cost volume 

that represents the differences between the features of the 

two images. This allows evaluating potential 

correspondences between pixels from the left and right 

images. 

4. Refinement by ConvLSTM: ConvLSTM is applied to 

capture contextual spatial dependencies, which refines 

and improves the pixel matching. 

5. Disparity Map Prediction: The outputs of the ConvLSTM 

will allow for the prediction of the disparity map, 

indicating the positional difference between 

corresponding pixels in the two images. 

 

3.1. Wavelet Scattering Network for Multi-Scale 

Feature Extraction 

To perform precise matching between the pixels of the 

left and right input images, it is essential to extract unique and 

informative features for each pixel. Our feature extraction method 

relies on the use of wavelet scattering, a technique inspired by S. 

Mallat [30][31], which allows for extracting information at 

different scales. Each scale is obtained through a wavelet 

transform applied to the image. 

The wavelet scattering (WS) approach decomposes the 

image at different resolutions, following a multi-resolution 

technique, thus enabling the capture of both local (in higher scales) 

and global (in lower scales) details of the image. To meet 

computational requirements in terms of processing time and 

memory space, we designed a three-level extraction model, with 

each level consisting of two steps: 

1. Wavelet Transform: A wavelet convolution, which 

replaces traditional convolutions to extract features at 

each level. 

2. Wavelet Dimensionality Reduction: A pooling process 

using wavelet coefficients, which reduces the image size 

while preserving essential information, unlike classical 

max pooling. 

These two steps result in image downsampling, where relevant 

information is captured through multi-scale analysis. This process 

generates three feature maps at three distinct resolution levels. 

Each map is a fraction of the input image size (1/2r), so the shape 

of each feature map (H/22r
, W/22r), where r=1,2,3 and H and W are 

the height and width of the input image, respectively. 

 

3.2. Cost Volume Estimation 

The cost volume is a crucial step in stereo vision. It is 

generated by comparing the pixels or features of the two images 

at different disparities. Each level of the volume represents a 

disparity hypothesis. By calculating these costs for various 

disparities, a three-dimensional representation of the pixel costs 

from the two input images is obtained. 

Our approach to disparity volume estimation is based on previous 

research [10][29], where the cost volume is constructed in three 

stages: 

1. Grouping potential correspondence candidates. 

2. Efficient aggregation of correspondence features. 

3. Refining the cost volume. 

Based on this strategy, we design our cost volume as illustrated in 

Figure -1- over three scales through the following steps: 

1. A preliminary cost volume (PCV) for both the left and 

right images is generated at a coarse scale (with reduced 

dimensions) and a resolution of 1/22r (r = 3). 

2. Refinement through two parallel stacked ConvLSTM 

networks and prediction of preliminary left and right 

disparities. 

3. Calculation of left and right error maps. 

4. Propagation of disparities and generation of adjusted left 

and right cost volumes at a higher level (r = 2, r = 1). 

 

3.2.1. Preliminary Cost Volume (PCV) 

After extracting the feature maps from the scattering of 

both the left and right images, we construct two preliminary cost 

volumes for the left and right images (PCVL and PCVR) (see 

Figure -1-) to obtain a preliminary disparity map estimate at the 

coarse scale (r = 3). In this step, two constraints must be 

considered: 
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1. Aggregation Region Constraint: The aggregation 

region is typically limited to a region around a central 

pixel, in the form of a fixed-size window. In our method, 

we used the image reduced by 1/22r (r = 3).at the coarse 

scale as the search area to determine correspondences. 

2. Epipolar Constraint: This geometric constraint reduces 

the search space for correspondences to a single 

dimension, as homologous points lie along the same line, 

called the epipolar line. This is why we used rectified 

images. 

Thus, these two modeled constraints allowed us to 

evaluate the relationships between pixels in the same plane and 

those in the aggregation region. To compute the similarity between 

the features of each pixel (x, y) in the left image and its horizontal 

counterpart in the right image (and vice versa, between the right 

image and the left image), we chose the L1 norm (Manhattan 

Distance) [33], which measures the sum of the absolute 

differences between the corresponding pixel features. This choice 

is relevant in our case, as the L1 norm computes the distance by 

following the coordinate axes, as if moving strictly along these 

axes. 

This processing generates a 2D disparity map for each 

disparity value. These 2D maps are then concatenated to create a 

3D volume. Once the PCVL and PCVR are generated, a 

preliminary left disparity map (DL) and a preliminary right 

disparity map (DR) are predicted, after a high-performance 

ConvLSTM processing and disparity refinement, to improve 

precision and eliminate errors caused by information loss due to 

the reduction of the input images. 

Figure -1- The process of generating the left PCV and 

right PCV at scale 3 after feature extraction using wavelet 

scattering and the construction of a pyramidal network. Disparity 

refinement is achieved through parallel ConvLSTM on the PCVs. 

 

3.2.2. Adjusted Cost Volume 

Given that the left (PCVL) and right (PCVR) disparity 

maps have been carefully refined by ConvLSTM at scale r=3, 

preliminary disparity maps, DL and DR, have been generated, 

accompanied by error maps, EL and ER, which will then be used as 

inputs for the next scale. Inspired by the work of J. Kang et al. [34] 

and A. Alghoul [10], adjusted cost volumes, ACVL and ACVR, 

were constructed at higher scales r=2 and r=1 as illustrated in 

Figure -2-. These volumes exploit bilinear interpolation of the 

disparity maps DL and DR, allowing for a significant increase in 

the resolution of the preliminary maps while facilitating the 

comparison of features between the left and right images. The 

correlation between these images is measured by a small window 

convolution, followed by L1 normalization on the depth 

dimension. The adjusted cost volumes ACVL and ACVR, as well 

as the augmented error maps, are then passed as input to further 

ConvLSTM networks, ensuring progressive and accurate 

refinement of the disparities at each scale. 

Figure – 2 -The process of generating the left and right 

Adjusted Cost Volumes (ACV) at scale 2 and scale 1. 

 

3.2.3. Refinement by Stacked ConvLSTM and 

Disparity Prediction 

 

The WS-CRNN model iteratively refines the disparity 

estimation using two stacked ConvLSTMs in parallel, processing 

the left and right views. At each resolution level, a ConvLSTM 

receives as input the matching cost volume (PCVL or ACVL and 

PCVR or ACVR) and the previous error map (EL and ER) to 

generate the left and right disparity maps (DL and DR). These maps 
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are then compared to produce new error maps, which are 

reintroduced into the model to progressively improve the uncertain 

regions. 

ConvLSTM networks [35][36] are particularly effective 

at capturing contextual spatial information while reducing model 

redundancy, thus optimizing their role in filtering and refining the 

results. A ConvLSTM follows the same logic as a classic LSTM 

but applies spatial convolutions instead of matrix multiplications 

in its input, forget, and output gates: 

 

𝒊𝒕 = 𝝈(𝑾𝒙𝒊 ∗ 𝑿𝒕 + 𝑾𝒉𝒊 ∗ 𝑯𝒕−𝟏 + 𝑾𝒄𝒊°𝑪𝒕−𝟏 + 𝒃𝒊 ) 

𝒊𝒕 = 𝝈(𝑾𝒙𝒇 ∗ 𝑿𝒕 + 𝑾𝒉𝒇 ∗ 𝑯𝒕−𝟏 + 𝑾𝒄𝒇°𝑪𝒕−𝟏 + 𝒃𝒇 ) 

𝑪𝒕 = 𝒇𝒕°𝑪𝒕−𝟏 + 𝒊𝒕° 𝐭𝐚𝐧𝐡(𝑾𝒙𝒄 ∗ 𝑿𝒕 + 𝑾𝒉𝒄 ∗ 𝑯𝒕−𝟏 + 𝒃𝒄 ) 

𝒐𝒕 = 𝝈(𝑾𝒙𝒐 ∗ 𝑿𝒕 + 𝑾𝒉𝒐 ∗ 𝑯𝒕−𝟏 +  𝑾𝒄𝒐°𝑪𝒕 + 𝒃𝒊𝒐) 

𝑯𝒕 = 𝒐𝒕° 𝐭𝐚𝐧𝐡(𝑪𝒕) 

Where:  

• *: represents the convolution operation instead of matrix 

multiplication. 

• Xt: represents the input tensor obtained by concatenating 

the matching cost volume PCV and the error map 

generated at step t. 

• Ht−1 and Ct−1: correspond to the hidden state and memory 

of the ConvLSTM at step t−1. 

• Wxi, Wxf, Wxc, Wxo: Convolution filters associated with 

the inputs.. 

• Whi,Whf,Whc,Who: Convolution filters applied to the 

hidden state. 

• Wci,Wcf,Wco: Parameters for the cell memory 

• σ: Sigmoid function that constrains values between 0 and 

1. 

• it, ft et ot : represent the input gate, forget gate, and output 

gate, which regulate the flow of information within the 

model. 

The ConvLSTM hidden state tensor is then passed 

through simple convolutional layers to produce a cost tensor of 

dimensions (H/22r  * W/22r *dmax), where r=1,2,3 and H and W are 

the height and width of the input image, and dmax  is the maximum 

disparity considered. By taking the negative of each value in this 

cost tensor, we obtain a score tensor: 

S = −C 

Where: 

• C: is the cost tensor. 

• S: is the score tensor. 

A softmax normalization is applied to the score tensor to 

obtain a probability tensor that represents the probability of each 

possible disparity for each pixel: 

𝑷(𝒅) =
𝒆𝑺(𝒅)

∑ 𝒆𝑺(𝒅′)
𝒅′∈𝑫

 

Where: 

• P(d): is the probability associated with disparity d. 

• S(d): is the score for the cost corresponding to disparity 

d. 

Rather than simply taking the disparity with the highest 

probability, a weighted average of the disparities is calculated to 

ensure better accuracy: 

𝒅^ = ∑ 𝒅 ∙ 𝑷(𝒅)

𝒅∈𝑫

 

Where: 

• d^: is the final estimated disparity.  

• P(d): is the probability of disparity d. 

• d represents each possible disparity value.  

The left and right disparity maps (DL and DR), generated 

by the stacked ConvLSTMs of the left and right views inspired by 

Jie Z [36], are first converted into the coordinate system of the 

opposite view (D'L and D'R). Then, the initial disparity map and its 

converted version (DL and D'L, DR and D'R) are merged and 

processed through a series of convolutional layers, followed by a 

sigmoid transformation, to produce the corresponding error map 

(EL and ER). This error map is then propagated to the next level, 

allowing the model to target areas requiring adjustments. 

 

4. Evaluations and Results 

 

To assess the relevance of our approach and evaluate the 

performance of our design, we utilized a stereo dataset that 

integrates real-world conditions, combined with a rigorous 

evaluation protocol based on multiple metrics. 

4.1.  Data 

According to MSDE [10], Selective-stereo [43], and All-

in-one [44], four datasets are commonly used to examine stereo 

matching methods: Scene Flow [46], Middlebury [42], KITTI-

2025 [45], and ETHD3 [47]. These datasets offer a remarkable 

diversity of synthetic, indoor, outdoor, and real-world contexts, 

thus allowing for testing the robustness of stereo matching 

algorithms. 

Scene Flow [46] offers a vast collection of over 39,000 

pairs of synthetic stereo images, carefully divided into training and 

test sets. 

Middlebury 2014 [42] provides a corpus of 23 indoor 

scenes for training and 10 scenes for testing, with flexible 

resolution across three levels. 

KITTI-2015 [45] stands out with its 200 training pairs 

and 200 test pairs, accompanied by sparse disparity maps taken 

from real driving scenes, presenting a challenge for algorithmic 

accuracy. 

Finally, ETH3D [47] provides grayscale image pairs 

capturing both indoor and outdoor environments, adding further 

complexity to the analysis. 

 

4.2.  Evaluation Criteria 

 

The KITTI 2015 benchmark [44][50], a key reference in 

the evaluation of computer vision algorithms, stands out for its 

ability to dive deep into dynamic environments. It allows for 

precise measurement of algorithm performance by analyzing the 

error rate of pixels, a crucial metric derived from a set of test 

images that are meticulously annotated according to a rigorously 

established ground truth. 

A pixel is considered correctly estimated only when the 

error associated with it is less than 3 pixels or 5% of its actual 

value a tolerance threshold that pushes algorithms to their limits. 

Errors are carefully classified into different categories, 

each holding its own significance in the overall evaluation: 

• D1 / D2: These measures quantify the stereo disparity 

errors on the first and second image of a temporal pair, 

two crucial elements for depth perception. 
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• Fl: The optical flow error rate, reflecting the accuracy of 

observed movements between successive images. 

• SF (Scene Flow): A composite measure where disparity 

and optical flow combine to provide a more global 

understanding of errors across the entire moving scene. 

• bg / fg / all: The errors are then separated into three 

distinct regions: the background, the foreground, and all 

annotated pixels, allowing for a more detailed evaluation 

of specific image areas. 

Such an evaluation protocol, which blends rigor and 

comprehensiveness, not only ensures an objective comparison of 

different approaches but also becomes the essential catalyst for the 

development of increasingly robust methods. It pushes the 

boundaries of visual perception, crucial for navigation in complex 

and ever-evolving environments. 

 

4.3.  Implementation 

We implemented WS-CRNN using the PyTorch 

framework [48], leveraging the RMSprop optimizer [49] for 

improved gradient management within the range [-1, 1]. 

For pretraining, we selected the Scene Flow dataset, chosen for its 

rich collection of synthetic stereo pairs with high-fidelity ground 

truth, including both the cleanpass and finalpass subsets providing 

an ideal training environment for stereo matching. WS-CRNN 

operates across multiple representation scales, simultaneously 

generating three feature maps at 1/4, 1/8, and 1/16 of the original 

input size, thereby capturing information at varying levels of 

granularity. 

Initial training was performed over 150 epochs with an 

initial learning rate of 0.001, decayed by a factor of 0.9 every 10 

epochs. The ConvLSTM-based refinement stage was 

subsequently trained for 30 epochs with a learning rate of 0.01, 

reduced by a factor of 10 every 10 epochs. Fine-tuning was 

conducted on the KITTI dataset, using an 80/20 split for training 

and validation, and a reduced learning rate to better adapt the 

model to KITTI-specific disparity distributions. The full training 

procedure requires approximately 15 days on a high-performance 

GPU (RTX 3090 or higher), owing to the increased complexity of 

combining SWCNN and ConvLSTM modules. This 

comprehensive training strategy enables WS-CRNN to achieve 

strong generalization while progressively enhancing prediction 

accuracy through recurrent refinement. 

 

4.4. Quantitative Results 

 

The evaluation of the WS-CRNN model performance is 

based on a thorough analysis of disparity errors, where the 

predicted disparity maps are compared with ground truth maps. 

This evaluation process follows a rigorous protocol, divided into 

several steps. First, the disparity maps are generated by the WS-

CRNN model, taking into account the specifics of each scene and 

the underlying dynamics. Then, performance metrics (D1, D2, bg, 

fg, and all) are computed according to the evaluation protocol 

provided by the KITTI 2015 benchmark [50]. 

The evaluation results of WS-CRNN on the KITTI 2015 

benchmark are illustrated in Figure -3-, and compared with 

various state-of-the-art methods [10]. These results reveal some 

interesting trends: WS-CRNN manages to maintain relatively low 

errors in terms of overall disparity (D1-all and D2-all), which is a 

clear sign of excellent stereo matching accuracy. This accuracy is 

also reflected in modest errors on the background (bg), 

highlighting the model’s ability to accurately estimate disparities 

even in low-texture areas. However, another, more subtle aspect 

emerges: errors in the foreground (fg) are slightly higher. This 

trend suggests that the model faces some challenges in complex 

areas, where moving objects or dense, varied textures pose greater 

difficulties for the disparity estimation method. This phenomenon, 

although expected in current vision algorithms, points to areas for 

future improvement. 

Figure -3- Comparison of disparity errors (KITTI 2015) 

 

4.5. Qualitative Results 

 

In this section, we present an in-depth qualitative 

evaluation of the WS-CRNN model applied to the KITTI 2015 

dataset. Figure – 4 - illustrates a direct comparison between our 

approach and two state-of-the-art methods, including PSMNet, a 

model that leverages spatial pyramid pooling to capture global 

context at multiple resolutions, and effectively regularizes the 3D 

cost volume through stacked hourglass-type networks [6]. Since 

our model relies on ConvLSTM as proposed by [19], we also 

provide a direct comparison with the results from [19]. 

The visual results generated by WS-CRNN display 

disparity maps of competitive quality, both in terms of structural 

accuracy and robustness in ambiguous areas, such as fine borders, 

weakly textured surfaces, or partially occluded regions. The joint 

visualization of error maps and estimated disparities highlights the 

model’s ability to maintain spatial coherence while effectively 

locating regions of uncertainty. 

Finally, the maps produced by WS-CRNN are 

qualitatively very close to those generated by PSMNet and LRCR, 

suggesting that our model achieves performance parity with these 

architectures, while benefiting from the unique advantages 

associated with its spatio-temporal recurrent structure. 
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Figure 4: Shows the disparity prediction results on the 

KITTI 2015 test data. The first row displays the left images of the 

stereo pairs. The following rows show the disparity maps 

estimated by: (a) PSMNet, (b) LRCR, (c) WS-CRNN, along with 

their respective error maps. 

 

4.6. Analysis of Configurations from the Ablation 

Study 

 

As part of the analysis of the structural contributions of 

the WS-CRNN model, a rigorously conducted ablation study was 

performed to isolate the impact of three key modules by 

comparing their removal to the performance of the complete 

model. The configurations tested are detailed in Figure 5, where 

each row displays one of the five metrics (D1-all, D2-all, bg, fg, 

all) for each of the following ablation configurations: 

• AB1: In this configuration, the feature extraction step 

using wavelet scattering was completely removed. The 

stereo image pairs, without the prior multi-scale 

processing, were fed directly into the network. 

• AB2: Here, the ConvLSTM recurrent component 

responsible for refining the results was replaced by a 

simple 2D convolutional layer. 

• AB3: In this configuration, instead of completely 

removing the multi-scale analysis, the pyramid strategy 

initially integrated into WS-CRNN was replaced with a 

more conventional pyramid decomposition, often used in 

earlier CNN architectures. 

• AB4: The complete WS-CRNN model, including all the 

aforementioned modules, is used as the reference point. 

This is not an ablation itself, but it provides a comparative 

baseline to quantify the performance losses associated 

with each removal. 

 

Figure – 5 -The evaluation results from the different 

ablation studies were obtained on the test set of the 

FlyingThings3D dataset. 

 

The results of the ablation studies conducted on the WS-

CRNN model using the FlyingThings3D dataset show that the 

complete model achieves the best performance in terms of 

accuracy and robustness in generating disparity maps. The 

removal of wavelet scattering leads to a loss of multi-scale 

information, increasing errors, particularly in low-texture areas. 

The absence of the ConvLSTM module impairs the model’s 

ability to capture spatial and temporal dependencies, resulting in a 

significant increase in errors in complex areas. Lastly, using a 

classic pyramid decomposition, although it maintains a scale 

hierarchy, moderately degrades performance, especially in 

visually dense environments. These results highlight the 

importance of each component in the WS-CRNN model and their 

complementarity for precise and reliable disparity estimation. 

 

5. Conclusion 

In this study, we introduced WS-CRNN, an innovative 

neural architecture strategically designed for disparity estimation, 

balancing algorithmic precision and computational efficiency. The 

model leverages a methodological synergy between several low-

dimensional cost volumes spread across multiple resolutions and 

a ConvLSTM recurrent module, which iteratively extracts, 

aggregates, and refines spatial-temporal dependencies. This 

foundation is further enhanced by the integration of wavelet 

scattering, serving as a hierarchical encoding mechanism for 

textures at different frequencies, thus strengthening the robustness 

of the initial representation. 

This technological hybridization has enabled competitive 

performance in terms of disparity map quality, comparable to 

state-of-the-art approaches. 

The systematic ablation studies conducted on the key components 

of the model empirically and quantitatively confirms their 
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functional complementarity. The removal of the scattering 

module, the elimination of the ConvLSTM, or the replacement of 

the multi-scale pyramid with a more conventional variant all lead, 

without exception, to a significant degradation in performance, 

highlighting the interdependence of the modules and the relevance 

of a deeply hierarchical modular architecture. 

Looking ahead, future directions include the integration 

of more refined adaptive mechanisms, such as occlusion handling 

blocks or contextual attention modules, to reduce sensitivity to 

ambiguous areas and improve generalization under real-world 

conditions. Additionally, adapting WS-CRNN for platforms with 

limited resources or applications requiring real-time processing is 

a promising avenue, at the intersection of structural optimization 

and embedded intelligence. 
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