
Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

A Multi-stage Parallel Differential Evolution for Global Optimization

Mohamed Saad ¹, Hegazy Zaher ², Naglaa Ragaa ¹ and Heba Sayed ¹

¹ Department of Operations Research and Management, Faculty of Graduate Studies for Statistical Research,

 Cairo University, Giza, Egypt.

² Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research,

 Cairo University, Giza, Egypt.

Abstract- Parallel optimization offers faster and more efficient problem-solving by reducing computational resource usage

and execution time. By integrating multiple techniques such as evolutionary algorithms and swarm-based optimization, it

enables more effective exploration of the search space and facilitates the attainment of optimal solutions within shorter time

frames. Differential Evolution (DE) is a powerful and relatively recent evolutionary algorithm. However, its performance is

often limited because most applications rely on a single mutation operator with fixed parameter values. To address this

limitation, this study proposes a parallel framework that executes three DE algorithms simultaneously, with dynamic

selection among three mutation strategies. Each algorithm runs independently on separate computational units, and the best

solution identified is shared across units to accelerate convergence and improve efficiency. In the proposed approach, a

mutation pool consisting of three mutation operators and a parameter pool with three predefined values are established.

During evolution, mutation operators and parameter values are randomly selected from these pools to generate trial vectors,

allowing the algorithm to exploit the complementary strengths of different strategies. The effectiveness of the proposed

algorithm was evaluated on 24 widely used benchmark functions. Experimental results demonstrate significant

improvements in both convergence speed and solution quality compared with traditional DE and non-DE algorithms. These

findings indicate that the proposed parallel DE framework is highly competitive and provides a promising direction for

solving complex optimization problems.

Keywords: optimization; global optimization; differential evolution; evolutionary algorithm; mutation operator; Parameter

 pool; parallel techniques; termination rules.

I. Introduction

The problem of finding the global minimum of a multidimensional function occurs in various scientific areas

and has wide applications. In this context, the programmer seeks the absolute minimum of a function subject to

some assumptions or constraints. The objective function is defined as:

 f : S → R, S ⊂ Rn is expressed as:

 𝑥∗ = arg min
𝑥𝜖𝑆

𝑓(𝑥) (1)

Where the set S is defined as:

S = [a1, b1] ⊗ [a2, b2] ⊗ . . . [an, bn]

A series of methods have been proposed in the recent literature to handle problems described by Equation (1).

That usually divided into two categories: deterministic and stochastic methods. In the first category, the most

common method is the interval method [1, 2], where the set S is divided through a series of steps into sub-

regions and some sub-regions that do not contain the global solution can be removed using some pre-defined

criteria. The second category contains stochastic techniques that do not guarantee finding the total minimum, and

they are easier to program since they do not rely on some assumptions about the objective function. In addition,

they also constitute the vast majority of global optimization methods. Among them, there are methods based on

considerations derived from Physics, such as the Simulated Annealing method [3], the Henry’s Gas Solubility

Optimization (HGSO) [4], the Gravitational Search Algorithm (GSA) [5], the Small World Optimization

Algorithm (SWOA) [6], etc. Also, Global optimization problems arise in diverse scientific and engineering

domains and have inspired the development of numerous evolutionary-based techniques. Representative

examples include Genetic Algorithms (GA) [7], Differential Evolution (DE) [8, 9], Particle Swarm Optimization

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

(PSO) [10, 11], Ant Colony Optimization (ACO) [12], Bat Algorithm (BA) [13], Whale Optimization Algorithm

(WOA) [14], and Grasshopper Optimization Algorithm (GOA) [15]. These methods have demonstrated

effectiveness in a wide range of applications. For instance, in physics, genetic algorithms have been successfully

applied to locating particle positions in magnetic plasmas and developing optimization tools [16]. Furthermore,

the combined application of different optimization methods has been shown to improve both stability and

performance in complex problem settings [17]. Despite their effectiveness, most evolutionary algorithms

demand substantial computational resources and execution time, which can hinder their practical applicability to

large-scale or real-time problems. To overcome these limitations, parallel optimization has emerged as a

powerful strategy. By distributing computations across multiple processing units, parallel optimization

accelerates convergence and enhances solution quality. Applications of parallel optimization span a variety of

domains, such as machine learning parameter tuning, control design, and engineering optimization [18]. For

example, the parallel implementation of a Genetic Algorithm with a Fair Competitive Strategy (HFCGA) has

been employed to design an optimized cascade controller for ball-and-beam systems, achieving better

performance than traditional methods while avoiding premature convergence [19]. The advantages of parallel

optimization extend beyond speed. By enabling multiple algorithms to run simultaneously and exchange

information, parallel frameworks promote better exploration of the search space and improved robustness against

local optima. They also facilitate effective error handling and allow the use of more complex models through

increased computational capacity [20]. However, realizing these benefits requires careful design of workload

distribution strategies and efficient mechanisms for result collection and evaluation. Among the various

evolutionary algorithms, Differential Evolution (DE) has gained prominence for its simplicity and effectiveness.

Introduced by Storn and Price [21], DE has proven particularly successful in addressing global and continuous

optimization problems. The algorithm begins by initializing a population of candidate solutions in the search

space, which are then evaluated using a fitness function. Offspring are generated through mutation and crossover

operations, and a greedy selection mechanism ensures that superior solutions replace inferior ones [22, 23]. The

success of DE, however, heavily depends on the choice of mutation strategies and parameter control methods,

which can limit its performance in challenging optimization tasks. To address these challenges, this paper

proposes a new optimization framework based on the parallel execution of multiple DE algorithms across

different computational units. Each algorithm operates independently, and the best solutions discovered are

periodically shared among units using novel propagation techniques. To further improve efficiency, intelligent

termination criteria based on stochastic observations are incorporated and adapted to the parallel computing

environment. In addition, the framework draws on insights from parallel computing strategies commonly applied

in computational fluid dynamics (CFD), leveraging tools such as OpenMP, MPI, and CUDA [24] to reduce

execution time and enhance scalability. The following sections are organized as follows: In Section 2, the

method description and the parallel DE algorithm are briefly introduced. Section 3 provides the test

functions. In Section 4, the experiments and performance evaluation are implemented. Finally, in Section 5,

the conclusions from the current work are discussed.

II. METHOD DESCRIPTION

The Differential Evolution Method

The DE method relies on differential operators and is particularly effective in optimization problems that involve

searching through a continuous search space. By employing differential operators, DE generates new solutions

that are then evaluated and adjusted until the optimal solution is achieved [25]. The method was used in a series

of problems, such as electromagnetics [26], energy consumption problems [27], job shop scheduling [28], image

segmentation [29], etc. The Differential Evolution operates through the following steps: Initially, initialization

takes place with a random population of solutions in the search space. Then, each solution is evaluated based

on the objective function. Subsequently, a process is iterated involving the generation of new solutions

through modifications, evaluation of these new solutions, and selection of the best ones for the next generation.

The algorithm terminates when a termination criterion is met, such as achieving sufficient improvement in

performance or exhausting the number of iterations.

Mutation Strategies

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

In stage of mutation, the vectors of the population solutions are mutated using mutation strategies at each

iteration, the mutation operator is employed for each target vector to yield corresponding mutant vector 𝑣𝑖,𝑔, the

most common mutation strategies are found in Deng et al.[30] showed as follows:

(1) DE/rand/1

𝑣𝑖,𝑔 = 𝑥𝑟1,𝑔 + 𝐹. (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔) (2)

(2) DE/best/1

𝑣𝑖,𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (3)

(3) DE/current-to-best/1

𝑣𝑖,𝑔 = 𝑥𝑖,𝑔 + 𝐹. (𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔) + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (4)

(4) DE/rand/2

𝑣𝑖,𝑔 = 𝑥𝑟1,𝑔 + 𝐹. (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔) + 𝐹. (𝑥𝑟4,𝑔 − 𝑥𝑟5,𝑔) (5)

(5) DE/best/2

𝑣𝑖,𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) + 𝐹. (𝑥𝑟3,𝑔 − 𝑥𝑟4,𝑔) (6)

(6) DE/rand-to-best/1

 𝑣𝑖,𝑔 = 𝑥3,𝑔 + 𝐾. (𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥3,𝑔) + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) (7)

Where the indices 𝑟1 , 𝑟2 , 𝑟3 , 𝑟4 𝑎𝑛𝑑 𝑟5 ∈ {1, 2, · · ·, NP} are mutually exclusive integers that randomly chosen

and should keep different from each other, which means that 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑟𝑖. The vector 𝑥𝑏𝑒𝑠𝑡,𝑔

represents the optimal individual in the population at the gth generation, the vector 𝑥𝑖,𝑔 represents target vector.

Propagation Mechanism

In the proposed PDEmp method, the algorithm uses a (1-to-1) propagation mechanism. Generally, a random

island will send its best value to another randomly selected island. i.e., the best values of the islands are spread to

the rest by replacing their worst values, To investigate the potential of this in various combinations in many

islands have been tested on a set of 24 benchmark problems, this technique is shown in Fig. 1.

Fig. 1. (1-to-1) Propagation technique.

Mutation Pool of the Proposed Algorithm

Mutation operators and parameter settings significantly influence DE’s performance. To exploit their

complementary strengths, several researchers have pointed out that different mutation operators can result in

better performances [31, 32]. The proposed PDEmp framework incorporates a mutation pool comprising three

categories: the first is Best-guided strategy: DE/rand-to-best/1, which uses the current best solution. The second

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

is Random strategy: DE/rand/2, which promotes global exploration. The third is Intermediate strategy:

DE/current-to-rand/1, which provides robustness for rotated problems [33]. During evolution, one operator is

randomly selected from the pool for application in a given DE instance. The control parameters F (mutation

scaling factor) and CR (crossover probability) are also drawn from predefined sets. Larger values of F promote

exploration across the search space, whereas smaller values accelerate convergence by focusing on local

neighborhoods. Similarly, higher values of CR increase population diversity, while lower values are better suited

for separable problems [32]. By combining different strategies and parameter values, PDEmp achieves a balance

between exploration and exploitation [31, 32].

The Framework of the Proposed Algorithm

Parallel differential evolution algorithm with mutation pool (PDEmp) is presented, which implements the

algorithms with advanced features, such as an enhanced stopping rule and advanced mutation schemes. The

software allows for coding the objective function in C++ and has been tested on well-known benchmark

functions, showing promising results. This work compares the performance of the proposed method with other

parallel optimization methods. The pseudocode of the PDEmp is presented in Algorithm 1. The mutation

strategies divide into three categories according to their features. DE/rand-to-best/1 belongs to the first

category that has the best individual found heretofore; DE/rand/2 is the second category that perform

random search, and the DE/current-to-rand/1 belongs to the last category. It is very difficult to decide

which mutation strategy is better in each category. Based on the observations and motivation, a mutation

pool is designed. In the evolution, one mutation strategy is randomly chosen for each algorithm, and three

associated parameters are chosen simultaneously. Based on the mutation pool, a variant DE is designed, in

which three mutation strategies and parameters are used in a single iteration. So, the proposed algorithm is

defined as PDEmp. The performance of the PDEmp is estimated on a set of benchmark functions. The

flowchart of the proposed algorithm is shown in Fig. 2, a parallel Differential Evolution technique is

proposed that utilizes the mutation pool in order to random choosing of operators, each algorithm with its

own independent termination criteria as follows:

The Termination Rule

In the base Differential Evolution algorithm, termination occurs after reaching a predefined number of iterations,

which can sometimes result in premature halting before the global minimum is identified. In contrast, the

difference in the proposed method is calculated as follows:

 δi
(k)

= |fi,min
(k)

− fi,min
(k−1)

|, (8)

In this equation, fi,min
(k)

 represents the best function value found for island 𝑖 iteration k. If δi
(k)

≤ ϵ for a specified

number of iterations, then the population evolution for the island is terminated. Furthermore, in the proposed

PDEmp method, if this condition holds for more than one island, the entire algorithm will terminate.

In the proposed Parallel Differential Evolution with Mutation Pool (PDEmp) algorithm, the population is divided

into N independent subgroups, referred to as islands (Fig. 2). Each island performs the differential evolution

process independently. For example, if ten agents are distributed across two islands, agents 1–5 are assigned to

Island 1, while agents 6–10 belong to Island 2. This island-based model enhances parallelism and allows

efficient utilization of available computational resources. The PDEmp algorithm integrates both the mutation

pool strategy and the island model with a dedicated termination mechanism. The termination mechanism serves

two main purposes: to accelerate convergence by monitoring the progress of each island, and to avoid

unnecessary computations once no significant improvement is observed. At the beginning of the process, three

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

DE algorithms are distributed algorithms across NI computational threads, where NI > 3. Each thread

independently executes a DE algorithm. During each iteration, every computational unit identifies its best

solution and communicates this to other units, replacing their worst-performing solutions. This exchange ensures

a balanced distribution of search efforts and promotes faster convergence. When the number of threads is equal

to, or an integer multiple of, the number of DE variants, the distribution is fully equivalent across units. In cases

where equivalence is not exact, the degree of balance improves as the number of threads increases. The

termination criterion is designed to adapt to continuous optimization tasks. Specifically, the algorithm evaluates

the progress of the search at each iteration. If predefined stopping conditions are satisfied, such as stagnation in

fitness improvement or reaching a maximum number of iterations, the corresponding thread halts execution. This

adaptive termination rule minimizes redundant computations while ensuring that computational resources are

efficiently allocated to active search processes. By combining parallel execution, inter-island communication,

and adaptive termination, PDEmp achieves improved convergence speed and higher solution quality compared

with traditional DE methods. The termination rule thus plays a central role in balancing efficiency with

robustness, ensuring that the algorithm achieves competitive performance while avoiding unnecessary resource

consumption.

Algorithm 1 The proposed overall algorithm

1. Set as NI the total number of parallel processing units.

2. Set as Nk the total number of allowed iterations.

3. Set k = 0 the iteration number.

4. For j = 1, . . . , NI do in parallel

(a) Execute an iteration of differential evolution algorithm as follow:

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

(b) Find the best element from all optimization methods and propagate it to the rest of

processing units.

5. End For

6. Update k = k + 1

7. Check the proposed termination rule. If the termination rule is valid, then go to step 7a

else go to step 4.

(a) Terminate and report the best value from all processing units.

1. INPUT:

(a) The population size Nd ≥ 4. The members of this population are
also called agents.

(b) The crossover probability CR ∈ [0, 1].

(c) The differential weight F ∈ [0, 2].

2. OUTPUT:

(a) The agent xbest with the lowest function value f (xbest).

3. Initialize all agents in S.

4. While termination criteria are not met do

(a) Randomly select a mutation operator from DE/rand-to-best/1, DE/rand/2
and DE/current-to- rand /1.

(b) For i = 1 . . . Nd do

i. Select as x the agent i.
ii. Select randomly three agents a, b, c with the property a ≠ b, b ≠ c, c ≠ a.

iii. Select a random position R ∈ {1, . . . , n}

iv. Create the vector y = [y1,,y2, . . . , yn] with the following procedure
v. For j = 1, . . . , n do

A. Set ri ∈ [0, 1] a random number.

B. If rj < CR or j = R then yj = aj + F × (bj - cj) else yj = xj.

vi. If y ∈S AND f (y) ≤ f (x) then x = y.

vii. EndFor

(c) EndFor

5. End While

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

Start

Initialization in PUs, initial distribution,

population, iterations, and all other

parameters.

Mapping subpopulations to

 Ni processor units.

Evaluate fitness values

Iteration

Or

Termination rule

Best solution

For all PUs

False

Single DE of PU 1 Single DE of PU 2 Single DE of PU 3

Crossover

Selection.
Find the
optimal

minimum

Crossover

Selection.
Find the
optimal

minimum

Crossover

Selection.
Find the
optimal

minimum

True

P
r
o
p

a
g
a
ti

o
n

 N

i
 i

sl
a
n

d
s

P
r
o
p

a
g
a
ti

o
n

N

i
 i

sl
a
n

d
s

Discover the best minimum

Among all parallel DE and

Propagate it to the rest

DE/rand/2
DE/current-to-rand/1

DE/rand-to-best/1
Mutation Pool

Random select
Mutation operator

Iteration=iteration+1

Fig. 2. Flowchart of the overall process, The DE acronym stands for the Differential Evolution method, the

PU acronym represents the Parallel Unit that executes the algorithm.

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

III. TEST FUNCTIONS

The benchmark functions used in the experiments have a fairly complex structure, and some of them have a

large number of dimensions that make them perfect for studying, testing and comparing the results with the

modified differential evolution method of Tsoulos, I.G. [34].

Benchmark functions To evaluate the effectiveness of the suggested parallel PDEmp algorithm in locating the

global minimum of functions, a set of test functions that are used here is selected [35, 36]. The selected functions

are as follows:

• BF1 function (Bohachevsky1) is defined as follows:

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1) −

4

10
 cos(4𝜋𝑥2) +

7

10

 With 𝑥 ∈ [- 100, 100]2

• BF2 function (Bohachevsky1) is defined as follows:

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1) cos(4𝜋𝑥2) +

3

10

 With 𝑥 ∈ [- 50, 50]2

• BRANIN function is given by:

𝑓(𝑥) = (𝑥2 −
5.1

4π2
𝑥1

2 +
5

π
𝑥1 − 6)2 + 10(1 −

1

8π
) cos(𝑥1) + 10

 At range −5 ≤ 𝑥1 ≤ 10 , 0 ≤ 𝑥2 ≤ 15.

• CM (Cosine Mixture) function

𝑓(𝑥) = 0.1 ∗ ∑cos(5𝜋𝑥𝑖)

𝑛

𝑖=1

− ∑𝑥𝑖
2

𝑛

𝑖=1

 With 𝑥 ∈ [- 1, 1]n

• Camel back function. Six Hump The function is given by:

𝑓(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4

 At range −5 ≤ 𝑥𝑖 ≤ 5.

• Easom function is given by:

𝑓(𝑥) = −𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒(−((𝑥2−𝜋)2+(𝑥1−𝜋)2))

 With 𝑥 ∈ [- 100, 100]2

• EXPONENTIAL function. The function is given by the following:

𝑓(𝑥) = − 𝑒𝑥𝑝 (−0.5∑ 𝑥𝑖
2

𝑛

𝑖=1

),

 At range −1 ≤ 𝑥𝑖 ≤ 1. in the experiments the function used with n = 4. And the

 Corresponding function is denoted by EXP16.

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

• GKLS function. The function is given by the following[37]:

F (x) = GKLS (x, n, w), n = 2, w = 50,

With 𝑥 ∈ [- 1, 1]2, n is a positive integer between 2 and 100.

• GRIEWANK function. The function is given by the following:

𝑓(𝑥) = 1 +
1

200
∑𝑥𝑖

2 −

2

𝑖=1

∏
cos(𝑥𝑖)

√(𝑖)
,

2

𝑖=1

 With 𝑥 ∈ [- 100, 100]2

• Hansen function. The function is given by the following:

𝑓(𝑥) = (∑ (𝑖 𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 𝑖)
5

𝑖=1
) ∗ (∑ (𝑗 𝑐𝑜𝑠((𝑗 + 1)𝑥2 + 𝑗)

5

𝑗=1
)

 With 𝑥 ∈ [- 10, 10]2

• HARTMAN3 function. The function is given by the following:

𝑓(𝑥) = − ∑𝑐𝑖

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1

),

 Where a =𝑎𝑖𝑗=[

3 10 30
0.1 10 35
3 10 30

0.1 10 35

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] , P =𝑝𝑖𝑗= [

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

]

 With 𝑥 ∈ [0, 1]3

• HARTMAN6 function. The function is given by the following:

𝑓(𝑥) = − ∑𝑐𝑖

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

6

𝑗=1

),

Where a =𝑎𝑖𝑗=[

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] ,

 P =𝑝𝑖𝑗= [

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8723 0.5743 0.1091 0.0381

]

 With 𝑥 ∈ [0, 1]6

• POTENTIAL function. As a test case, the molecular conformation corresponding to the global

minimum of the energy of N atoms interacting via the Lennard–Jones potential [38] is utilized. The

function to be minimized is defined as follows:

𝑉𝐿𝐽(𝑟) = 4𝜖[(
𝜎

𝑟
)12 − (

𝜎

𝑟
)6],

 In the current experiments, two different cases were studied: N = 3, 5.

• RASTRIGIN function. The function is given by the following:

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 − 𝑐𝑜𝑠(18𝑥1) − 𝑐𝑜𝑠(18𝑥2),
 With 𝑥 ∈ [-1, 1]2

• SHEKEL5 function:

𝑓(𝑥) = −∑
1

(𝑥 − 𝑎𝑖) (𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖

5

𝑖=1

Where a =

[

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7]

 , c =

[

0.1
0.2
0.2
0.4
0.4]

,

 With 𝑥 ∈ [0, 10]4

• SHEKEL7 function:

𝑓(𝑥) = −∑
1

 (𝑥 − 𝑎𝑖) (𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖

7

𝑖=1

Where a =

[

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3]

 , c=

[

0.1
0.2
0.2
0.4
0.4
0.6
0.3]

,

 With 𝑥 ∈ [0, 10]4

• SHEKEL10 function:

𝑓(𝑥) = −∑
1

 (𝑥 − 𝑎𝑖) (𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖

10

𝑖=1

Where a =

[

4 4 4 4
1 1 1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6]

 , c =

[

0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6]

,

 With 𝑥 ∈[0, 10]4

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

• ROSENBROCK function. The function is given by the following:

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2

𝑛−1

𝑖=1

),

 At range −30 ≤ 𝑥𝑖 ≤ 30, in the experiments using function with n = 16.

• SINUSOIDAL function

𝑓(𝑥) = −(2.5∏sin(𝑥𝑖 − z) +

𝑛

𝑖=1

∏sin(5(𝑥𝑖 − z))), 0 ≤ 𝑥𝑖 ≤ 𝜋

𝑛

𝑖=1

.

 The experiments use n = 4, and 𝑧 =
𝜋

6
 and the corresponding function denoted by

 The label SINU4.

• Test2N function. This function is given by the equation:

𝑓(𝑥) =
1

2
∑𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

4

𝑖=1

, 𝑥𝑖 ∈ [−5,5]

 The function has 2𝑛 in the specified range and in the experiments n = 4, 9.

• Test30N function. This function is given by:

𝑓(𝑥) =
1

10
𝑠𝑖𝑛2(3𝜋𝑥1) ∗ ∑((𝑥𝑖 − 1)2(1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑛 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛))

𝑛−1

𝑖=2

𝑥𝑖 ∈ [−10,10] , The function has 30𝑛 local minima in the search space and in the experiments n = 3, 4.

IV. RESULTS AND DISCUSSION

The parallel implementation of differential evolution was employed in comparative experiments, the

performance of the proposed PDEmp algorithm was assessed through a series of experiments utilizing 3

parallel units. The existing OpenMP library [39] facilitated the parallelization, and the entire technique was

implemented using the C++ programming language. All experiments were conducted on a system equipped

with an Intel (R) Core (TM) i7-8650U multi-core processor and 16 GB of RAM, using (the Windows 11

Pro) operating system, and the experimental settings used in the proposed PDEmp algorithm are presented

in Table 1.

Table 1: The following settings were initially used to conduct the experiments.

Parameter Value Explanation

Nd 120 Total elements for DE

Nk 200 number of iterations

F 0.8 Differential weight for DE

CR 0.9 Crossover Probability for DE

NP 10 Number of populations (agents)

propagation 1-to-1 scenario

𝑁𝑅 5 iterations

𝑁𝐼 2 islands

M 30 Number of iterations

𝜖 10−4 Small positive number

http://xisdxjxsu.asia/
https://quillbot.com/grammar-check#_bookmark12

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

In table 2, the columns display the average number of function calls for each problem, The first three

columns labeled (Multi-start Method – PSO method – GWO method – PDE_t) refer to a different optimization

methods that implement in parallel manner (Multi-start algorithm – Particle swarm optimization algorithm –

Grey wolf optimization algorithm – differential evolution algorithm) respectively, The final column refers to

the proposed PDEmp corresponds to the proposed Parallel Differential Evolution algorithm that utilizes a

new mutation pool strategy. To ensure the reliability and validity of the research, experiments were

conducted 30 times and concerned Table 2. The total function calls of benchmark tested functions using

different parallel optimization methods and the proposed (PDEmp) algorithm, this comparison showed in Fig. 3.

Table 2: Statistical comparison of function calls across different optimization methods and

The proposed (PDEmp) algorithm using a new strategy.

NO PROBLEMS
Multi-start

method

PSO

method

GWO

method

PDE_t Proposed

PDEmp

1 BF1 (Bohachevsky) 50762 3005 3080 6114 300

2 BF2 (Bohachevsky) 35711 2889 3083 7560 300

3 BRANIN 10,521 2417 2661 4289 300

4 CM4 (Cosine Mixture) 58,581 3144 3187 4079 600

5 Camel back 15,255 2547 2724 5940 600

6 Easom 5412 2232 2135 1721 300

7 EXP (16) 10,280 2676 4991 5339 300

8 GKLS 5908 2422 4840 2641 300

9 GRIEWANK 17,877 2820 3155 6915 300

10 Hansen 17,541 2587 2795 4263 1500

11 HARTMAN3 16,562 2550 2911 4566 300

12 HARTMAN6 21,015 2809 3408 5550 600

13 Potential 3 17,161 3170 3645 5256 300

14 Potential 5 30,249 4730 3380 7742 300

15 RASTRIGIN 23,015 2829 2806 5999 300

16 ROSENBROCK (16) 25,060 5170 8528 8307 300

17 SHEKEL5 16,972 2816 2778 5933 1500

18 SHEKEL7 17,127 2856 3324 5677 2100

19 SHEKEL10 17,135 2866 2866 5100 2400

20 SINUSOIDAL (4) 15647 2657 2231 4776 1500

21 Test function 2N4 15,806 2681 3603 5727 1800

22 Test function 2N9 20716 3067 4207 6288 1800

23 Test function 30N3 16,145 2762 2769 2869 600

24 Test function 30N4 15,907 2915 3144 2714 600

- TOTAL 464075 70617 82251 125365 19200

The proposed PDEmp algorithm was evaluated on the GKLS test function across multiple versions with

dimensionality ranging from 2 to 5. For each configuration, the number of function calls and the corresponding

execution times were recorded to assess both computational efficiency and convergence performance. The

experimental findings are summarized in Figures 4 and 5. Fig. 4 illustrates the number of function calls, while

Fig. 5 presents the average execution times. The results clearly indicate that the proposed algorithm requires

http://xisdxjxsu.asia/
https://quillbot.com/grammar-check#_bookmark13

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

substantially fewer function evaluations compared with competing approaches. This reduction in function calls

directly translates into shorter execution times, confirming the efficiency of the parallel framework.

These improvements can be attributed to two key features of the PDEmp algorithm: the incorporation of multiple

mutation strategies through the mutation pool, which enhances search diversity and reduces premature

convergence, and the propagation mechanism, which enables efficient sharing of superior solutions among

parallel units. Together, these features accelerate convergence toward high-quality solutions while minimizing

computational overhead.

Fig. 3. Comparison of total function calls of benchmark tested functions using different parallel

optimization methods and the proposed (PDEmp) algorithm

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

Fig. 4. The effect of the usage of the proposed (PDEmp) algorithm versus other parallel optimization methods

applying to GKLS function.

Overall, the experiments on the benchmark functions demonstrate that PDEmp achieves significant gains in both

convergence speed and computational efficiency. The reduction in function calls is particularly valuable for

complex optimization problems where evaluating the objective function is computationally expensive. Table 3

provides further insights, presenting computational times, additionally; Time comparisons when applying the

proposed PDEmp and different differential evolution optimization methods to GKLS test functions.

Table 3: Time comparisons (seconds) when applying parallel optimization methods and the proposed (PDEmp)

algorithm to GKLS function.

NO PROBLEMS parallel optimization methods

(Multi-start – PSO – DE)
Proposed PDEmp

1 GKLS (n=2) 0.225 0.0593

2 GKLS (n=3) 0.235 0.0638

3 GKLS (n=4) 0.25 0.0725

4 GKLS (n=5) 0.215 0.0953

Fig. 5. Comparison of executing time applying parallel optimization methods and the proposed (PDEmp)

algorithm to GKLS function.

V. CONCLUSION

Mutation operators and parameter settings play a critical role in enhancing the performance of Differential

Evolution (DE). In this study, three mutation operators were incorporated into a mutation pool, and a parameter

pool with three predefined values was established. During each generation, one mutation operator and

corresponding parameter values were randomly selected to generate trial vectors. This design enables the

algorithm to exploit the complementary strengths of different strategies, thereby improving its search capacity

and convergence behavior. The proposed Parallel Differential Evolution with Mutation Pool (PDEmp) algorithm

was evaluated on 24 benchmark functions and compared with both traditional DE and non-DE algorithms. The

results demonstrate that PDEmp consistently outperforms the competing methods in terms of convergence speed

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

and solution quality. The superior performance is primarily attributed to the random selection of multiple

mutation strategies within a parallel execution framework. In addition to the mutation pool, the proposed method

integrates an efficient propagation mechanism that disseminates the best solutions across parallel units, and a

robust termination rule based on asymptotic criteria. These features ensure effective use of computational

resources, reduced execution time, and broader applicability to different global optimization problems. The

design of a mutation pool enhances solution quality and improves algorithmic performance and Comprehensive

evaluation on benchmark functions, demonstrating that PDEmp is highly competitive compared with existing

approaches. Overall, the study shows that combining parallel execution with adaptive mutation and termination

strategies provides a promising direction for solving complex global optimization problems. Future research may

extend this framework by exploring adaptive parameter control, hybridization with other evolutionary

algorithms, and large-scale real-world applications.

REFERENCES

1. Wolfe, M.A. Interval methods for global optimization. Appl. Math. Comput. 1996, 75, 179–206.

2. Csendes, T.; Ratz, D. Subdivision Direction Selection in Interval Methods for Global Optimization.

SIAM J. Numer. Anal. 1997, 34, 922–938.

3. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220,

671–680.

4. Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility

optimization: A novel physics based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667.

5. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009,

179, 2232–2248.

6. Du, H.; Wu, X.; Zhuang, J. Small-World Optimization Algorithm for Function Optimization. In

Proceedings of the International Conference on Natural Computation, Xi’an, China, 24–28 September

2006; pp. 264–273.

7. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99.

8. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol.

Comput. 2011, 15, 4–31.

9. Charilogis, V.; Tsoulos, I.G.; Tzallas, A.; Karvounis, E. Modifications for the Differential Evolution

Algorithm. Symmetry 2022, 14, 447.

10. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—

International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995;

Volume 4, pp. 1942–1948.

11. Charilogis, V.; Tsoulos, I.G. Toward an Ideal Particle Swarm Optimizer for Multidimensional Functions.

Information 2022, 13, 217.

12. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents.

IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29–41.

13. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng.

Comput. 2012, 29, 464–483.

14. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67.

15. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng.

Softw. 2017, 105, 30–47.

16. Honda, M. Application of genetic algorithms to modelings of fusion plasma physics. Comput. Phys.

Commun. 2018, 231, 94–106.

17. Luo, X.L.; Feng, J.; Zhang, H.H. A genetic algorithm for astroparticle physics studies. Comput. Phys.

Commun. 2020, 250, 106818.

18. Kim, H.S.; Tsai, L. Design Optimization of a Cartesian Parallel Manipulator. J. Mech. Des. 2003, 125,

43–51.

19. Oh, S.; Jang, H.J.; Pedrycz, W. The design of a fuzzy cascade controller for ball and beam system: A

http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition ISSN: 1673-064X

http://xisdxjxsu.asia VOLUME 21 ISSUE 09 SEPTEMBER 2025 231-246

study in optimization with the use of parallel genetic algorithms. Science Direct Eng. Artif. Intell. 2009,

22, 261–271.

20. Censor, Y.; Zenios, S. Parallel Optimization: Theory, Algorithms and Applications; Oxford University Press:

Oxford, UK, 1998; ISBN-13: 978-0195100624.

21. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization

over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359.

22. Bilal; Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of

more than two decades of research. Eng. Appl. Artif. Intell. 2020, 90, 103479.

23. Guo, S.-M.; Yang, C.-C.; Hsu, P.-H.; Tsai, J.S.H. Improving Differential Evolution with a Successful-

Parent-Selecting Framework. IEEE Trans. Evol. Comput. 2015, 19, 717–730.

24. Afzal, A.; Ansari, Z.; Faizabadi, A.R.; Ramis, M. Parallelization Strategies for Computational Fluid

Dynamics Software: State of the Art Review. Arch. Comput. Methods Eng. 2017, 24, 337–363.

25. Feoktistov, V. Differential Evolution. In Search of Solutions. Optimization and Its Applications;

Springer: Berlin/Heidelberg, Germany, 2006.

26. Rocca, P.; Oliveri, G.; Massa, A. Differential Evolution as Applied to Electromagnetics. IEEE

Antennas Propag. Mag. 2011, 53, 38–49.

27. Lee, W.S.; Chen, Y.T.; Kao, Y. Optimal chiller loading by differential evolution algorithm for

reducing energy consumption. Energy Build. 2011, 43, 599–604.

28. Yuan, Y.; Xu, H. Flexible job shop scheduling using hybrid differential evolution algorithms. Comput.

Ind. Eng. 2013, 65, 246–260.

29. Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A Novel Method for Multilevel Color Image Segmentation

Based on Dragonfly Algorithm and Differential Evolution. IEEE Access 2019, 7, 19502–19538.

30. W. Deng, J. Xu, Y. Song, H. Zhao, Differential evolution algorithm with wavelet basis function and optimal

mutation strategy for complex optimization problem, Appl. Soft Compute. 100 (2021).

31. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with

ensemble of parameters and mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696.

32. Wang, Y.; Cai, Z.; Zhang, Q. Differential Evolution with Composite Trial Vector Generation

Strategies and Control Parameters. IEEE Trans. Evol. Comput. 2011, 15, 55–66.

33. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm with Strategy Adaptation

for Global Numerical Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417.

34. Charilogis, V.; Tsoulos, I.G.; Tzallas, A.; Karvounis, E. Modifications for the Differential Evolution

Algorithm. Symmetry 2022,14.

35. Ali, M.M. Charoenchai Khompatraporn, Zelda B. Zabinsky, A Numerical Evaluation of Several Stochastic

Algorithms on Selected Continuous Global Optimization Test Problems. J. Glob. Opt. 2005, 31, 635–672.

36. Floudas, C.A.; Pardalos, P.M.; Adjiman, C.; Esposoto, W.; G¨um¨us, Z.; Harding, S.; Klepeis, J.; Meyer,

C.; Schweiger, C. Handbook of Test Problems in Local and Global Optimization; Kluwer Academic

Publishers: Dordrecht, The Netherlands, 1999.

37. Gaviano, M.; Ksasov, D.E.; Lera, D.; Sergeyev, Y.D. Software for generation of classes of test functions

with known local and global minima for global optimization. ACM Trans. Math. Softw. 2003, 29, 469–480.

38. Lennard-Jones, J.E. On the Determination of Molecular Fields. Proc. R. Soc. Lond. A 1924, 106, 463–477.

39. Chandra, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J.; Menon, R. Parallel Programming in

OpenMP; Morgan Kaufmann Publishers Inc.: Burlington, MA, USA, 2001.

http://xisdxjxsu.asia/

