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Abstract- Parallel optimization offers faster and more efficient problem-solving by reducing computational resource usage 

and execution time. By integrating multiple techniques such as evolutionary algorithms and swarm-based optimization, it 

enables more effective exploration of the search space and facilitates the attainment of optimal solutions within shorter time 

frames. Differential Evolution (DE) is a powerful and relatively recent evolutionary algorithm. However, its performance is 

often limited because most applications rely on a single mutation operator with fixed parameter values. To address this 

limitation, this study proposes a parallel framework that executes three DE algorithms simultaneously, with dynamic 

selection among three mutation strategies. Each algorithm runs independently on separate computational units, and the best 

solution identified is shared across units to accelerate convergence and improve efficiency. In the proposed approach, a 

mutation pool consisting of three mutation operators and a parameter pool with three predefined values are established. 

During evolution, mutation operators and parameter values are randomly selected from these pools to generate trial vectors, 

allowing the algorithm to exploit the complementary strengths of different strategies. The effectiveness of the proposed 

algorithm was evaluated on 24 widely used benchmark functions. Experimental results demonstrate significant 

improvements in both convergence speed and solution quality compared with traditional DE and non-DE algorithms. These 

findings indicate that the proposed parallel DE framework is highly competitive and provides a promising direction for 

solving complex optimization problems. 

Keywords: optimization; global optimization; differential evolution; evolutionary algorithm; mutation operator; Parameter     

                    pool; parallel techniques; termination rules. 

I. Introduction  

The problem of finding the global minimum of a multidimensional function occurs in various scientific areas 

and has wide applications. In this context, the programmer seeks the absolute minimum of a function subject to 

some assumptions or constraints. The objective function is defined as:  

  f : S → R, S ⊂ Rn is expressed as: 

   𝑥∗  = arg min
𝑥𝜖𝑆

𝑓(𝑥)                                               (1) 

Where the set S is defined as: 

S = [a1, b1] ⊗ [a2, b2] ⊗ . . . [an, bn] 

A series of methods have been proposed in the recent literature to handle problems described by Equation (1). 

That usually divided into two categories: deterministic and stochastic methods. In the first category, the most 

common method is the interval method [1, 2], where the set S is divided through a series of steps into sub-

regions and some sub-regions that do not contain the global solution can be removed using some pre-defined 

criteria. The second category contains stochastic techniques that do not guarantee finding the total minimum, and 

they are easier to program since they do not rely on some assumptions about the objective function. In addition, 

they also constitute the vast majority of global optimization methods. Among them, there are methods based on 

considerations derived from Physics, such as the Simulated Annealing method [3], the Henry’s Gas Solubility 

Optimization (HGSO) [4], the Gravitational Search Algorithm (GSA) [5], the Small World Optimization 

Algorithm (SWOA) [6], etc. Also, Global optimization problems arise in diverse scientific and engineering 

domains and have inspired the development of numerous evolutionary-based techniques. Representative 

examples include Genetic Algorithms (GA) [7], Differential Evolution (DE) [8, 9], Particle Swarm Optimization 
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(PSO) [10, 11], Ant Colony Optimization (ACO) [12], Bat Algorithm (BA) [13], Whale Optimization Algorithm 

(WOA) [14], and Grasshopper Optimization Algorithm (GOA) [15]. These methods have demonstrated 

effectiveness in a wide range of applications. For instance, in physics, genetic algorithms have been successfully 

applied to locating particle positions in magnetic plasmas and developing optimization tools [16]. Furthermore, 

the combined application of different optimization methods has been shown to improve both stability and 

performance in complex problem settings [17]. Despite their effectiveness, most evolutionary algorithms 

demand substantial computational resources and execution time, which can hinder their practical applicability to 

large-scale or real-time problems. To overcome these limitations, parallel optimization has emerged as a 

powerful strategy. By distributing computations across multiple processing units, parallel optimization 

accelerates convergence and enhances solution quality. Applications of parallel optimization span a variety of 

domains, such as machine learning parameter tuning, control design, and engineering optimization [18]. For 

example, the parallel implementation of a Genetic Algorithm with a Fair Competitive Strategy (HFCGA) has 

been employed to design an optimized cascade controller for ball-and-beam systems, achieving better 

performance than traditional methods while avoiding premature convergence [19]. The advantages of parallel 

optimization extend beyond speed. By enabling multiple algorithms to run simultaneously and exchange 

information, parallel frameworks promote better exploration of the search space and improved robustness against 

local optima. They also facilitate effective error handling and allow the use of more complex models through 

increased computational capacity [20]. However, realizing these benefits requires careful design of workload 

distribution strategies and efficient mechanisms for result collection and evaluation. Among the various 

evolutionary algorithms, Differential Evolution (DE) has gained prominence for its simplicity and effectiveness. 

Introduced by Storn and Price [21], DE has proven particularly successful in addressing global and continuous 

optimization problems. The algorithm begins by initializing a population of candidate solutions in the search 

space, which are then evaluated using a fitness function. Offspring are generated through mutation and crossover 

operations, and a greedy selection mechanism ensures that superior solutions replace inferior ones [22, 23]. The 

success of DE, however, heavily depends on the choice of mutation strategies and parameter control methods, 

which can limit its performance in challenging optimization tasks. To address these challenges, this paper 

proposes a new optimization framework based on the parallel execution of multiple DE algorithms across 

different computational units. Each algorithm operates independently, and the best solutions discovered are 

periodically shared among units using novel propagation techniques. To further improve efficiency, intelligent 

termination criteria based on stochastic observations are incorporated and adapted to the parallel computing 

environment. In addition, the framework draws on insights from parallel computing strategies commonly applied 

in computational fluid dynamics (CFD), leveraging tools such as OpenMP, MPI, and CUDA [24] to reduce 

execution time and enhance scalability. The following sections are organized as follows: In Section 2, the 

method description and the parallel DE algorithm are briefly introduced. Section 3 provides the test 

functions. In Section 4, the experiments and performance evaluation are implemented. Finally, in Section 5, 

the conclusions from the current work are discussed. 

II. METHOD DESCRIPTION 

The Differential Evolution Method 

The DE method relies on differential operators and is particularly effective in optimization problems that involve 

searching through a continuous search space. By employing differential operators, DE generates new solutions 

that are then evaluated and adjusted until the optimal solution is achieved [25]. The method was used in a series 

of problems, such as electromagnetics [26], energy consumption problems [27], job shop scheduling [28], image 

segmentation [29], etc. The Differential Evolution operates through the following steps: Initially, initialization 

takes place with a random population of solutions in the search space. Then, each solution is evaluated based 

on the objective function. Subsequently, a process is iterated involving the generation of new solutions 

through modifications, evaluation of these new solutions, and selection of the best ones for the next generation. 

The algorithm terminates when a termination criterion is met, such as achieving sufficient improvement in 

performance or exhausting the number of iterations. 

Mutation Strategies 
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In stage of mutation, the vectors of the population solutions are mutated using mutation strategies at each 

iteration, the mutation operator is employed for each target vector to yield corresponding mutant vector 𝑣𝑖,𝑔, the 

most common mutation strategies are found in Deng et al.[30] showed as follows: 

(1) DE/rand/1 

𝑣𝑖,𝑔 = 𝑥𝑟1,𝑔 + 𝐹. (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔)                                               (2) 

(2) DE/best/1 

𝑣𝑖,𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)                                             (3) 

(3) DE/current-to-best/1 

𝑣𝑖,𝑔 = 𝑥𝑖,𝑔 + 𝐹. (𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔) + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)                (4) 

(4) DE/rand/2 

𝑣𝑖,𝑔 = 𝑥𝑟1,𝑔 + 𝐹. (𝑥𝑟2,𝑔 − 𝑥𝑟3,𝑔) + 𝐹. (𝑥𝑟4,𝑔 − 𝑥𝑟5,𝑔)               (5) 

(5) DE/best/2 

𝑣𝑖,𝑔 = 𝑥𝑏𝑒𝑠𝑡,𝑔 + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔) + 𝐹. (𝑥𝑟3,𝑔 − 𝑥𝑟4,𝑔)             (6) 

(6) DE/rand-to-best/1 

  𝑣𝑖,𝑔 = 𝑥3,𝑔 + 𝐾. (𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥3,𝑔) + 𝐹. (𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)               (7) 

Where the indices 𝑟1 , 𝑟2 , 𝑟3 , 𝑟4 𝑎𝑛𝑑 𝑟5 ∈ {1, 2, · · ·, NP} are mutually exclusive integers that randomly chosen 

and should keep different from each other, which means that 𝑟1 ≠ 𝑟2  ≠ 𝑟3  ≠ 𝑟𝑖. The vector 𝑥𝑏𝑒𝑠𝑡,𝑔 

represents the optimal individual in the population at the gth generation, the vector 𝑥𝑖,𝑔 represents target vector.  

Propagation Mechanism 

In the proposed PDEmp method, the algorithm uses a (1-to-1) propagation mechanism. Generally, a random 

island will send its best value to another randomly selected island. i.e., the best values of the islands are spread to 

the rest by replacing their worst values, To investigate the potential of this in various combinations in many 

islands have been tested on a set of 24 benchmark problems, this technique is shown in Fig. 1.   

 

Fig. 1. (1-to-1) Propagation technique. 

Mutation Pool of the Proposed Algorithm 

Mutation operators and parameter settings significantly influence DE’s performance. To exploit their 

complementary strengths, several researchers have pointed out that different mutation operators can result in 

better performances [31, 32]. The proposed PDEmp framework incorporates a mutation pool comprising three 

categories: the first is Best-guided strategy: DE/rand-to-best/1, which uses the current best solution. The second 
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is Random strategy: DE/rand/2, which promotes global exploration. The third is Intermediate strategy: 

DE/current-to-rand/1, which provides robustness for rotated problems [33]. During evolution, one operator is 

randomly selected from the pool for application in a given DE instance.  The control parameters F (mutation 

scaling factor) and CR (crossover probability) are also drawn from predefined sets. Larger values of F promote 

exploration across the search space, whereas smaller values accelerate convergence by focusing on local 

neighborhoods. Similarly, higher values of CR increase population diversity, while lower values are better suited 

for separable problems [32]. By combining different strategies and parameter values, PDEmp achieves a balance 

between exploration and exploitation [31, 32]. 

The Framework of the Proposed Algorithm 

Parallel differential evolution algorithm with mutation pool (PDEmp) is presented, which implements the 

algorithms with advanced features, such as an enhanced stopping rule and advanced mutation schemes. The 

software allows for coding the objective function in C++ and has been tested on well-known benchmark 

functions, showing promising results. This work compares the performance of the proposed method with other 

parallel optimization methods. The pseudocode of the PDEmp is presented in Algorithm 1. The mutation 

strategies divide into three categories according to their features. DE/rand-to-best/1 belongs to the first 

category that has the best individual found heretofore; DE/rand/2 is the second category that perform 

random search, and the DE/current-to-rand/1 belongs to the last category. It is very difficult to decide 

which mutation strategy is better in each category. Based on the observations and motivation, a mutation 

pool is designed. In the evolution, one mutation strategy is randomly chosen for each algorithm, and three 

associated parameters are chosen simultaneously. Based on the mutation pool, a variant DE is designed, in 

which three mutation strategies and parameters are used in a single iteration. So, the proposed algorithm is 

defined as PDEmp. The performance of the PDEmp is estimated on a set of benchmark functions. The 

flowchart of the proposed algorithm is shown in Fig. 2, a parallel Differential Evolution technique is 

proposed that utilizes the mutation pool in order to random choosing of operators, each algorithm with its 

own independent termination criteria as follows: 

The Termination Rule 

In the base Differential Evolution algorithm, termination occurs after reaching a predefined number of iterations, 

which can sometimes result in premature halting before the global minimum is identified. In contrast, the 

difference in the proposed method is calculated as follows: 

                         δi
(k)

= |fi,min
(k)

− fi,min
(k−1)

|,                                    (8) 

In this equation, fi,min
(k)

 represents the best function value found for island 𝑖 iteration k. If δi
(k)

≤ ϵ for a specified 

number of iterations, then the population evolution for the island is terminated. Furthermore, in the proposed 

PDEmp method, if this condition holds for more than one island, the entire algorithm will terminate.  

In the proposed Parallel Differential Evolution with Mutation Pool (PDEmp) algorithm, the population is divided 

into N independent subgroups, referred to as islands (Fig. 2). Each island performs the differential evolution 

process independently. For example, if ten agents are distributed across two islands, agents 1–5 are assigned to 

Island 1, while agents 6–10 belong to Island 2. This island-based model enhances parallelism and allows 

efficient utilization of available computational resources. The PDEmp algorithm integrates both the mutation 

pool strategy and the island model with a dedicated termination mechanism. The termination mechanism serves 

two main purposes: to accelerate convergence by monitoring the progress of each island, and to avoid 

unnecessary computations once no significant improvement is observed. At the beginning of the process, three 
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DE algorithms are distributed algorithms across NI computational threads, where NI > 3. Each thread 

independently executes a DE algorithm. During each iteration, every computational unit identifies its best 

solution and communicates this to other units, replacing their worst-performing solutions. This exchange ensures 

a balanced distribution of search efforts and promotes faster convergence. When the number of threads is equal 

to, or an integer multiple of, the number of DE variants, the distribution is fully equivalent across units. In cases 

where equivalence is not exact, the degree of balance improves as the number of threads increases. The 

termination criterion is designed to adapt to continuous optimization tasks. Specifically, the algorithm evaluates 

the progress of the search at each iteration. If predefined stopping conditions are satisfied, such as stagnation in 

fitness improvement or reaching a maximum number of iterations, the corresponding thread halts execution. This 

adaptive termination rule minimizes redundant computations while ensuring that computational resources are 

efficiently allocated to active search processes. By combining parallel execution, inter-island communication, 

and adaptive termination, PDEmp achieves improved convergence speed and higher solution quality compared 

with traditional DE methods. The termination rule thus plays a central role in balancing efficiency with 

robustness, ensuring that the algorithm achieves competitive performance while avoiding unnecessary resource 

consumption. 

 
Algorithm 1 The proposed overall algorithm 

 
1. Set as NI the total number of parallel processing units. 

2. Set as Nk the total number of allowed iterations. 

3. Set k = 0 the iteration number. 

4. For j = 1, . . . , NI do in parallel 

(a) Execute an iteration of differential evolution algorithm as follow: 
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(b) Find the best element from all optimization methods and propagate it to the rest of 

processing units. 

5. End For 

6. Update k = k + 1 

7. Check the proposed termination rule. If the termination rule is valid, then go to step 7a 

else go to step 4. 

(a) Terminate and report the best value from all processing units. 

 

1. INPUT: 

(a) The population size Nd  ≥ 4. The members of this population are 
also called agents. 

(b) The crossover probability CR ∈ [0, 1]. 

(c) The differential weight F ∈ [0, 2]. 

2. OUTPUT: 

(a) The agent xbest with the lowest function value f (xbest). 

3. Initialize all agents in S. 

4. While termination criteria are not met do 

(a) Randomly select a mutation operator from DE/rand-to-best/1, DE/rand/2 
and DE/current-to- rand /1. 

(b) For i = 1 . . . Nd do 

i. Select as x the agent i. 
ii. Select randomly three agents a, b, c with the property a ≠ b, b ≠ c, c ≠ a. 

iii. Select a random position R ∈ {1, . . . , n} 

iv. Create the vector y = [y1,,y2, . . . , yn] with the following procedure 
v. For j = 1, . . . , n do 

A. Set ri ∈ [0, 1] a random number. 

B. If rj < CR or j = R then yj = aj + F ×  (bj -  cj )   else yj = xj. 

vi. If y ∈S AND f (y) ≤ f (x) then x = y. 

vii. EndFor 

(c) EndFor 

5. End While 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                    ISSN: 1673-064X 

 

http://xisdxjxsu.asia                                             VOLUME 21 ISSUE 09 SEPTEMBER 2025                                                  231-246 

 

Start 

Initialization in PUs, initial distribution,

population, iterations, and all other 

parameters.

Mapping subpopulations to

 Ni  processor units.

Evaluate fitness values

Iteration

Or 

Termination rule

Best solution 

For all PUs

False  

Single DE of PU 1 Single DE of PU 2 Single DE of PU 3

Crossover 

Selection. 
Find the 
optimal 

minimum 

Crossover 

Selection. 
Find the 
optimal 

minimum 

Crossover 

Selection. 
Find the 
optimal 

minimum 

True 

P
r
o
p

a
g
a
ti

o
n

  
  
  
 N

i 
 i

sl
a
n

d
s

P
r
o
p

a
g
a
ti

o
n

  
  
  
N

i 
 i

sl
a
n

d
s

Discover the best minimum 

Among all parallel DE and 

Propagate it to the rest

DE/rand/2 
DE/current-to-rand/1

DE/rand-to-best/1
Mutation Pool

Random select 
Mutation operator

Iteration=iteration+1

 

Fig. 2. Flowchart of the overall process, The DE acronym stands for the Differential Evolution method, the 

PU acronym represents the Parallel Unit that executes the algorithm. 
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III. TEST FUNCTIONS 

The benchmark functions used in the experiments have a fairly complex structure, and some of them have a 

large number of dimensions that make them perfect for studying, testing and comparing the results with the 

modified differential evolution method of Tsoulos, I.G. [34]. 

Benchmark functions To evaluate the effectiveness of the suggested parallel PDEmp algorithm in locating the 

global minimum of functions, a set of test functions that are used here is selected [35, 36]. The selected functions 

are as follows: 

• BF1 function ( Bohachevsky1 ) is defined as follows: 

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1) −

4

10
 cos(4𝜋𝑥2) +

7

10
 

        With  𝑥 ∈ [- 100, 100]2  

• BF2 function ( Bohachevsky1 ) is defined as follows: 

𝑓(𝑥) = 𝑥1
2 + 2𝑥2

2 −
3

10
cos(3𝜋𝑥1)  cos(4𝜋𝑥2) +

3

10
 

        With  𝑥 ∈ [- 50, 50]2 

• BRANIN function is given by: 

𝑓(𝑥) = (𝑥2 −
5.1

4π2
𝑥1

2 +
5

π
𝑥1 − 6)2 + 10(1 −

1

8π
) cos(𝑥1) + 10 

         At range  −5 ≤ 𝑥1 ≤ 10 , 0 ≤ 𝑥2 ≤ 15. 

• CM (Cosine Mixture) function 

𝑓(𝑥) = 0.1 ∗ ∑cos(5𝜋𝑥𝑖)

𝑛

𝑖=1

− ∑𝑥𝑖
2

𝑛

𝑖=1

 

        With  𝑥 ∈ [- 1, 1]n  

• Camel back function. Six Hump The function is given by: 

𝑓(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 

        At range  −5 ≤ 𝑥𝑖 ≤ 5. 

• Easom function is given by: 

𝑓(𝑥) = −𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒(−((𝑥2−𝜋 )2+(𝑥1−𝜋)2)) 

        With  𝑥 ∈ [- 100, 100]2  

• EXPONENTIAL function. The function is given by the following: 

𝑓(𝑥) = − 𝑒𝑥𝑝 (−0.5∑ 𝑥𝑖
2 

𝑛

𝑖=1

), 

         At range  −1 ≤ 𝑥𝑖 ≤ 1. in the experiments the function used with n = 4. And the   

         Corresponding function is denoted by EXP16. 
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• GKLS function. The function is given by the following[37]: 

F (x) = GKLS (x, n, w), n = 2, w = 50, 

With  𝑥 ∈  [- 1, 1]2, n is a positive integer between 2 and 100. 

 

• GRIEWANK function. The function is given by the following: 

𝑓(𝑥) = 1 +
1

200
∑𝑥𝑖

2 − 

2

𝑖=1

∏
cos(𝑥𝑖)

√(𝑖)
,

2

𝑖=1

 

       With  𝑥 ∈  [- 100, 100]2  

• Hansen function. The function is given by the following: 

𝑓(𝑥) = (∑ (𝑖 𝑐𝑜𝑠((𝑖 + 1)𝑥1 + 𝑖)
5

𝑖=1
) ∗  (∑ (𝑗  𝑐𝑜𝑠((𝑗 + 1)𝑥2 + 𝑗)

5

𝑗=1
) 

       With  𝑥 ∈  [- 10, 10]2  

• HARTMAN3 function. The function is given by the following: 

𝑓(𝑥) = − ∑𝑐𝑖 

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2 

3

𝑗=1

), 

     Where a =𝑎𝑖𝑗=[

3 10 30
0.1   10  35
3 10 30

0.1 10 35

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] , P =𝑝𝑖𝑗= [

0.3689 0.1170 0.2673
0.4699   0.4387  0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

] 

       With  𝑥 ∈  [0, 1]3  

• HARTMAN6 function. The function is given by the following: 

𝑓(𝑥) = − ∑𝑐𝑖 

4

𝑖=1

𝑒𝑥𝑝(−∑𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2 

6

𝑗=1

), 

Where a =𝑎𝑖𝑗=[

10 3 17 3.5 1.7 8
0.05   10  17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

] , c =𝑐𝑖=[

1.0
1.2
3.0
3.2

] , 

 P =𝑝𝑖𝑗= [

0.1312  0.1696 0.5569 0.0124 0.8283 0.5886
0.2329   0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8723 0.5743 0.1091 0.0381

] 

    With  𝑥 ∈  [0, 1]6 

• POTENTIAL function. As a test case, the molecular conformation corresponding to the global 

minimum of the energy of N atoms interacting via the Lennard–Jones potential [38] is utilized. The 

function to be minimized is defined as follows: 

𝑉𝐿𝐽(𝑟) = 4𝜖[( 
𝜎

𝑟
)12 − ( 

𝜎

𝑟
)6], 

        In the current experiments, two different cases were studied: N = 3, 5. 

• RASTRIGIN function. The function is given by the following: 
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𝑓(𝑥) =  𝑥1
2 + 𝑥2

2 − 𝑐𝑜𝑠(18𝑥1) −  𝑐𝑜𝑠(18𝑥2),   
     With  𝑥 ∈  [-1, 1]2  

 

 

 

 

• SHEKEL5 function: 

𝑓(𝑥) = −∑
1

(𝑥 − 𝑎𝑖)  ( 𝑥 − 𝑎𝑖 )
𝑇 + 𝑐𝑖

5

𝑖=1

 

Where a =

[
 
 
 
 
4 4 4 4
1   1  1 1
8 8 8 8
6 6 6 6
3 7 3 7]

 
 
 
 

 , c =

[
 
 
 
 
0.1
0.2
0.2
0.4
0.4]

 
 
 
 

, 

        With  𝑥 ∈  [0, 10]4 

• SHEKEL7 function: 

𝑓(𝑥) = −∑
1

 (𝑥 − 𝑎𝑖) ( 𝑥 − 𝑎𝑖 )
𝑇 + 𝑐𝑖

7

𝑖=1

 

Where a =

[
 
 
 
 
 
 
4 4 4 4
1   1  1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 3 5 3]

 
 
 
 
 
 

 , c=

[
 
 
 
 
 
 
0.1
0.2
0.2
0.4
0.4
0.6
0.3]

 
 
 
 
 
 

, 

        With  𝑥 ∈  [0, 10]4 

• SHEKEL10 function: 

𝑓(𝑥) = −∑
1

  (𝑥 − 𝑎𝑖) ( 𝑥 − 𝑎𝑖 )
𝑇 + 𝑐𝑖

10

𝑖=1

 

Where a =

[
 
 
 
 
 
 
 
 
 
4 4 4 4
1   1  1 1
8 8 8 8
6 6 6 6
3 7 3 7
2 9 2 9
5 5 3 3
8 1 8 1
6 2 6 2
7 3.6 7 3.6]

 
 
 
 
 
 
 
 
 

 ,          c =

[
 
 
 
 
 
 
 
 
 
0.1
0.2
0.2
0.4
0.4
0.6
0.3
0.7
0.5
0.6]

 
 
 
 
 
 
 
 
 

, 

     With 𝑥 ∈[0, 10]4 
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• ROSENBROCK function. The function is given by the following: 

𝑓(𝑥) = ∑(100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)2

𝑛−1

𝑖=1

), 

     At range −30 ≤ 𝑥𝑖 ≤ 30, in the experiments using function with n = 16. 

 

 

 

• SINUSOIDAL function 

𝑓(𝑥) = −(2.5∏sin(𝑥𝑖 − z) +

𝑛

𝑖=1

∏sin(5(𝑥𝑖 − z))),        0  ≤ 𝑥𝑖 ≤ 𝜋

𝑛

𝑖=1

. 

    The experiments use n = 4, and 𝑧 =
𝜋

6
 and the corresponding function denoted by     

     The label SINU4. 

• Test2N function. This function is given by the equation: 

𝑓(𝑥) =
1

2
∑𝑥𝑖

4 − 16𝑥𝑖
2 + 5𝑥𝑖

4

𝑖=1

, 𝑥𝑖 ∈ [−5,5]  

     The function has 2𝑛 in the specified range and in the experiments n = 4, 9.  

• Test30N function. This function is given by: 

𝑓(𝑥) =
1

10
𝑠𝑖𝑛2(3𝜋𝑥1) ∗ ∑( (𝑥𝑖 − 1)2(1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1))) + (𝑥𝑛 − 1)2(1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛))

𝑛−1

𝑖=2

 

𝑥𝑖 ∈ [−10,10] , The function has 30𝑛 local minima in the search space and in the experiments n = 3, 4. 

IV. RESULTS AND DISCUSSION 

The parallel implementation of differential evolution was employed in comparative experiments, the 

performance of the proposed PDEmp algorithm was assessed through a series of experiments utilizing 3 

parallel units. The existing OpenMP library [39] facilitated the parallelization, and the entire technique was 

implemented using the C++ programming language. All experiments were conducted on a system equipped 

with an Intel (R) Core (TM) i7-8650U multi-core processor and 16 GB of RAM, using (the Windows 11 

Pro) operating system, and the experimental settings used in the proposed PDEmp algorithm are presented 

in Table 1.  

Table 1: The following settings were initially used to conduct the experiments. 

Parameter Value Explanation 

Nd 120 Total elements for DE 

Nk 200 number of iterations 

F 0.8 Differential weight for DE 

CR 0.9 Crossover Probability for DE 

NP 10 Number of populations (agents) 

propagation 1-to-1 scenario 

𝑁𝑅  5 iterations 

𝑁𝐼  2 islands 

M 30 Number of iterations 

𝜖 10−4 Small positive number 
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In table 2, the columns display the average number of function calls for each problem, The first three 

columns labeled (Multi-start Method – PSO method – GWO method – PDE_t) refer to a different optimization 

methods that implement in parallel manner (Multi-start algorithm – Particle swarm optimization algorithm – 

Grey wolf optimization algorithm – differential evolution algorithm) respectively, The final column refers to 

the proposed PDEmp corresponds to the proposed Parallel Differential Evolution algorithm that utilizes a 

new mutation pool strategy. To ensure the reliability and validity of the research, experiments were 

conducted 30 times and concerned Table 2. The total function calls of benchmark tested functions using 

different parallel optimization methods and the proposed (PDEmp) algorithm, this comparison showed in Fig. 3. 
 

Table 2: Statistical comparison of function calls across different optimization methods and  

The proposed (PDEmp) algorithm using a new strategy. 

NO PROBLEMS 
Multi-start  

method 

PSO 

method 

GWO 

method 

PDE_t Proposed 

PDEmp 

1 BF1 (Bohachevsky) 50762 3005 3080 6114 300 

2 BF2 (Bohachevsky) 35711 2889 3083 7560 300 

3             BRANIN 10,521 2417 2661 4289 300 

4 CM4 (Cosine Mixture) 58,581 3144 3187 4079 600 

5 Camel back 15,255 2547 2724 5940 600 

6 Easom 5412 2232 2135 1721 300 

7                EXP (16) 10,280 2676 4991 5339 300 

8 GKLS 5908 2422 4840 2641 300 

9           GRIEWANK 17,877 2820 3155 6915 300 

10 Hansen 17,541 2587 2795 4263 1500 

11 HARTMAN3 16,562 2550 2911 4566 300 

12 HARTMAN6 21,015 2809 3408 5550 600 

13 Potential 3 17,161 3170 3645 5256 300 

14 Potential 5 30,249 4730 3380 7742 300 

15            RASTRIGIN 23,015 2829 2806 5999 300 

16   ROSENBROCK (16) 25,060 5170 8528 8307 300 

17              SHEKEL5 16,972 2816 2778 5933 1500 

18              SHEKEL7 17,127 2856 3324 5677 2100 

19              SHEKEL10 17,135 2866 2866 5100 2400 

20 SINUSOIDAL (4) 15647 2657 2231 4776 1500 

21 Test function 2N4 15,806 2681 3603 5727 1800 

22 Test function 2N9 20716 3067 4207 6288 1800 

23 Test function 30N3 16,145 2762 2769 2869 600 

24 Test function 30N4 15,907 2915 3144 2714 600 

-          TOTAL 464075 70617 82251 125365 19200 

 

The proposed PDEmp algorithm was evaluated on the GKLS test function across multiple versions with 

dimensionality ranging from 2 to 5. For each configuration, the number of function calls and the corresponding 

execution times were recorded to assess both computational efficiency and convergence performance. The 

experimental findings are summarized in Figures 4 and 5. Fig. 4 illustrates the number of function calls, while 

Fig. 5 presents the average execution times. The results clearly indicate that the proposed algorithm requires 
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substantially fewer function evaluations compared with competing approaches. This reduction in function calls 

directly translates into shorter execution times, confirming the efficiency of the parallel framework.  

These improvements can be attributed to two key features of the PDEmp algorithm: the incorporation of multiple 

mutation strategies through the mutation pool, which enhances search diversity and reduces premature 

convergence, and the propagation mechanism, which enables efficient sharing of superior solutions among 

parallel units. Together, these features accelerate convergence toward high-quality solutions while minimizing 

computational overhead. 

 

 
Fig. 3. Comparison of total function calls of benchmark tested functions using different parallel 

optimization methods and the proposed (PDEmp) algorithm 
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Fig. 4. The effect of the usage of the proposed (PDEmp) algorithm versus other parallel optimization methods 

applying to GKLS function. 

 
Overall, the experiments on the benchmark functions demonstrate that PDEmp achieves significant gains in both 

convergence speed and computational efficiency. The reduction in function calls is particularly valuable for 

complex optimization problems where evaluating the objective function is computationally expensive. Table 3 

provides further insights, presenting computational times, additionally; Time comparisons when applying the 

proposed PDEmp and different differential evolution optimization methods to GKLS test functions. 

Table 3: Time comparisons (seconds) when applying parallel optimization methods and the proposed (PDEmp) 

algorithm to GKLS function. 

NO PROBLEMS parallel optimization methods 

(Multi-start – PSO – DE) 
Proposed PDEmp 

1 GKLS (n=2) 0.225 0.0593 

2 GKLS (n=3) 0.235 0.0638 

3 GKLS (n=4) 0.25 0.0725 

4 GKLS (n=5) 0.215 0.0953 

 

Fig. 5. Comparison of executing time applying parallel optimization methods and the proposed (PDEmp) 

algorithm to GKLS function. 

V. CONCLUSION 

Mutation operators and parameter settings play a critical role in enhancing the performance of Differential 

Evolution (DE). In this study, three mutation operators were incorporated into a mutation pool, and a parameter 

pool with three predefined values was established. During each generation, one mutation operator and 

corresponding parameter values were randomly selected to generate trial vectors. This design enables the 

algorithm to exploit the complementary strengths of different strategies, thereby improving its search capacity 

and convergence behavior. The proposed Parallel Differential Evolution with Mutation Pool (PDEmp) algorithm 

was evaluated on 24 benchmark functions and compared with both traditional DE and non-DE algorithms. The 

results demonstrate that PDEmp consistently outperforms the competing methods in terms of convergence speed 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                    ISSN: 1673-064X 

 

http://xisdxjxsu.asia                                             VOLUME 21 ISSUE 09 SEPTEMBER 2025                                                  231-246 

 

and solution quality. The superior performance is primarily attributed to the random selection of multiple 

mutation strategies within a parallel execution framework. In addition to the mutation pool, the proposed method 

integrates an efficient propagation mechanism that disseminates the best solutions across parallel units, and a 

robust termination rule based on asymptotic criteria. These features ensure effective use of computational 

resources, reduced execution time, and broader applicability to different global optimization problems. The 

design of a mutation pool enhances solution quality and improves algorithmic performance and Comprehensive 

evaluation on benchmark functions, demonstrating that PDEmp is highly competitive compared with existing 

approaches. Overall, the study shows that combining parallel execution with adaptive mutation and termination 

strategies provides a promising direction for solving complex global optimization problems. Future research may 

extend this framework by exploring adaptive parameter control, hybridization with other evolutionary 

algorithms, and large-scale real-world applications. 
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