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Abstract- Improving the efficiency of synchronous generators is
crucial for achieving significant energy savings in global
electricity production, given that they contribute to approximately
95% of the world’s power generation. This article explores the
topic of controlling synchronous generators, providing a thorough
theoretical foundation and simulation-based control strategies
along with a complete framework. The synchronous generator
model is first linearized and then state feedback control strategies
are used. The research smoothly shifts to exploring neuro-fuzzy
control, noting that linear models are not sufficient for describing
the complexities observed in the

behavior of synchronous generators. The neuro-fuzzy controller
was developed to address the system’s non-linearities. Its
improved performance is a result of its ability to simulate
complex, non-linear systems better than conventional approaches.
Nonlinearities are addressed by combining neuro-fuzzy
intelligence with linear control. Stability and precision are
improved by a control law that has been derived to counteract
nonlinearities. The study highlights the neuro-fuzzy controller’s
adaptive characteristics in obtaining accurate output control under
difficult nonlinear behavior in the generator system.

Index Terms- Neuro-Fuzzy, State feedback, Linear model,
Nonlinear model, Lyapunov Stability

1. INTRODUCTION

ynchronous generators are recognized for their longevity and

dependability in providing steady power under many
circumstances, making them essential in fulfilling the increasing
demands for electricity worldwide [1]. Even with their
importance, these generators are still difficult to fully optimize for
grid stability and energy efficiency. Due to their nonlinear and
dynamic character, they require complex control systems, which
have historically relied on linearized models for stabilization.
Nevertheless, standard methods are unable to fully capture the
complex nonlinear behavior, which hinders achieving peak
performance. Resolving this constraint is essential to guaranteeing
the efficient operation and accurate control of electrical output in
power generation
systems. A neuro-fuzzy is an advanced control system that
improves the accuracy and flexibility of a system for controlling,
by merging fuzzy logic and neural network techniques. The
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system can efficiently manage uncertainties and nonlinearities
thanks to this hybrid method, which also optimizes generator
performance under a range of operating situations.in leading
journals to complete their grades. In addition, the published
research work also provides a big weight-age to get admissions in
reputed varsity. Now, here we enlist the proven steps to publish
the research paper in a journal.

In the literature, the comparison to Particle Swarm Optimization
and conventional methods, including the use of a Biogeography-
Based Optimization (BBO) algorithm to optimize PID parameters
in a Power System Stabilizer (PSS) showed superior performance
in minimizing low-frequency oscillations in a simulated single
machine infinite bus system [2]. However, the BBO algorithm
could have drawbacks like slow convergence and sensitivity in
initial conditions. The neuro-fuzzy controller, on the other hand,
uses its adaptive learning potential to improve performance and
get past the problems with BBO. It turns out to be more accurate
and efficient for controlling synchronous generators. In a related
study, digital time simulations for a one-machine infinite bus test
power system demonstrated that an Adaptive Neuro-Control
System (ANCS) using neural networks for nonlinear generator
control was more adaptable and effective in improving system
damping than linear optimal and self-tuning regulators [3].
However there could be problems with overfitting and
computational complexity with the ANCS. On the other hand, a
neuro-fuzzy controller works better and more accurately for
controlling synchronous generators. It does this by utilizing its
enhanced adaptability to manage uncertainties and nonlinearity,
which makes it a good substitute for ANCS in some situations.
The study smoothly combines a particular linearized model for
synchronous generators with the neuro-fuzzy controller. The
literature review emphasizes neuro-fuzzy control as a
comprehensive strategy for controlling both linear and nonlinear
components. Its superiority is confirmed by comparative analysis,
providing a cost-effective way to optimize power generation
control while resolving issues with traditional methods. [4].

The study develops a control law to reduce the nonlinearities of
synchronous generators, enhancing accuracy and stability. An
effective method for nonlinear dynamics

is obtained by combining this with state feedback control. The
adaptive characteristics of the neuro-fuzzy controller are used to
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show precise output control in difficult nonlinear circumstances.
A complete solution for synchronous generator performance
optimization is provided by this integrated method. [5].

Given the aforementioned steps, the following goals are stated for
this research

paper:

(1) To analyze and contrast state feedback control’s efficiency for
linearized synchronous generator models.

(2) To create and put into use a neuro-fuzzy controller for the
linearized model, allowing for precise output regulation and
adaptive control.

(3) To create a control law that efficiently reduces nonlinearities
in the behavior of synchronous generators.

(4) To integrate state feedback control with the nonlinear control
law for improved stability.

(5) To use the neuro-fuzzy controller on the controlled nonlinear
model and determine whether it can sustain the necessary
performance levels under nonlinear circumstances.

II. PROBLEM FORMULATION

The synchronous generator and issue statement is modeled both
linearly and nonlinearly in this section.

A. Dynamic Modeling

One of the most crucial aspects of modeling power systems is the
modeling of synchronous generators. Several models are put forth
in the literature [6] depending on the information that is available
about the system. Due to its low computational expenses,
decentralization is becoming more and more important in multi-
machine scenarios. Local implementation of the state estimate
technique would be made possible by decentralization. System
partitioning and the boundary of subsystems are essential to the
decentralization process [7][8]. Furthermore, many decentralized
synchronous machine models are employed, including the
transient and sub-transient models [6][9]. The state equations
listed below describe the characteristics of the transient
synchronous machine model that is employed in this study.

@ = wg(w—1-fp) )

& = [T = Te = De(w — 1) @)

where wg is the starting value for w, w is the per unit speed of the
rotor, and fy is the rate at which the angle of the terminal voltage
phasor is changing. a represents the angle of the generator’s
internal rotor with regard to the terminal voltage phasor, M is the
mass inertia of the rotor, T, is the mechanical torque produced by
the turbine driving the generator, T, is the electrical torque related
to the power that the generator is required to supply and D, is the
coefficient for damping, to smooth our w oscillations in transient
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conditions. These equations, often known as “swing equations”
are crucial for stability. Conceptually, w and power system
frequency are linked [10], and any changes to the power network
have an impact on fy and hence, T,.

The following equations describe how the rotor of the generator
works to generate voltage in the stator:

C))

)

;o 1 ’ dz 12
E,= E{Efd —Eq— (X4 —Xa)[ L X Xls( Xg — Xis)ta Eq)]} 3)
. 1 k
Ed = T—{—Ed —_ (Xq - X&) |:- ,—((X, Xls)l'q b Ed):|}
qo
. 1
Efrq = T, [ka(Vrer — Vi) — Egdl
Whereas,

Te = kq1Eqta + ka1 Eqtq + (X4 — X§)tata
TS _X(,l:| [kqlEd - ﬁvd]

L

ol =77 Xy 1 ||KaEq—7vg
e, T 15,
il =7 [ 1l +mb

The direct axis and quadrature axis voltages are calculated as

Ve = ,vtzd +vf,, Vvq=-—vsina, v, =vcos a
v

= _(Vv _Vy)' fo = _(fv_fy)' a=6-0

It is evident that this state variable uses the internal rotor angle ()
rather than the rotor angle (8). This choice was based on the fact
that, in a model of a multimachine power system, each generator’s
rotor angle (J;) and stator voltage phase (8;), which are crucial for
the generator’s internal parameters, are determined with reference
to a common reference frame. Nevertheless, it would be
counterproductive in a decentralized setting to know the values of
these figures without also being aware of the common reference
frame [11]. To deal with this, the internal rotor angle might be
utilized as a state variable.

B. Output Equations

The measurement outputs at the HV bus are the active power
output (P,), the reactive power output (@, ), the current
magnitude (i), and its phase with respect to the voltage phasor
(6,5).The stator current measured phase (6,,,) and its measured
magnitude (t,) with respect to the voltage phasor are the
measurements that are regarded as system outputs. The following
equations yield these:
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=7 [12+13 (10)

an

and (i4) , (14) are given by (7) and due to its close relationship to
speed, frequency measurement (fsy5) has also been taken into
account; it’s per unit value is:
fsys = w (12)
Attempting to increase the accuracy of the unknown input
estimation can be facilitated by further measurements [12].
Regarding the measurable quantities, the decentralized model used
here permits the use of extra quantities as measurements (unlike,
say, the model in [12]), however this depends on the model that is
applied. Since this can be done using the decentralized model
employed here, the prior case studies have
been reexamined, taking into account the additional measurements
that can be made by Phase Measuring Units (PMUs) (active and
reactive power) [12]. The following are
the measurement functions for these:

[Py = Eqtq + Eqtq + (X — X} )tatg — (G + 2)(Rs + TRT) (13)

[Qy = Eqty — (Xy +7°X7) 2 — (Xg + Xp) i3 — Egtg (14
where P, and Q,, represent the generator’s terminal bus-measured
active and reactive power, respectively. The ratios of constants
given in above equations are given as following:

(lei’ - Xls)
ko =-—a “ls/ 15
@ (X<,1 - Xls) ( )
Xg — X4
ko, =-—da “dJ 16
= (X<,1 - Xls) ( )
ko = (4 = %) (17)
(X - x)
Xg —Xg)
k., =-—4 74 18
(X — Xis) 1%

By taking into account Xg' = Xg and X; = X, it is possible to
construct the transient model since ky = 1, kgy = kg = 1
and k,, = kg, = 0in this situation the Eqns. (3),(4),(5),(6),(7)
becomes
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. 1 ,
Eq = T_{Efd — Eq — (Xq — X[} (19
do
. 1 ,
Eq = T_{_Ed — (X = X)[t [} (20)
qo
. 1
Efq = T [(Veer — Vo) — Eidl (21)
A
Te = Eqtq + Eqtq + (X4 — X{)talq (22)
L s —Xg||Eq4 —nv
[d]:Z_l s af[Ea —MVa 23)
q Xy 1 ||Eq—nvg
C. State Space Representation
The following are the state, input, and output vectors:
x=[% X x3 X2 x5]T=[a w E; Eq Eg]T
u=[U U uz W]T=[Tn Ve v fo]”
y=[Y1 Y2 Y3 Wa yS]T = [fsys ly gty Py Qy]T

Using the aforementioned variables to build the state space model,
the following model is derived

% = Ax + Bu + 6(x,u) (24)

y =Cx+Du (25)
where the disturbance vector, d € R¥? is present. The matrices
A,B,C and D can be represented as uncertain matrices with
compatible dimensions.

x|

A=A,+A,, B=B,+B,

C=C,+C,, D=D,+D,,

Consequently, after being rearranged in terms of the state and the

input vector, The linear terms of the state equations yield the 4,
and B, matrices, which are given as follows:
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0 wz; O 0 0 1
0 Dr 0 0 0
M
0 0 0 1 0
A, = Tqo
0 0 ! 0 !
Tdo qu
0 0 0 0 1
T,
0 0 0 wp
1 0 0 0
M
B, =0 0 0 o0
0 0 0 O
0 KA 0 0
L TA .

the output equations around the nominal operating point have been
linearized, Co and Do are obtained. Given below are the function
O(x,u) =[601(x,u)02(x,u)83(x,u)04(x,u)050x, u)]”

Whereas,

_Te

01(x,u) =0,02(x,u) = m

1 1
,03(x,u) = _Td Katg +X14)
o

1 1
04(x,u) = o (—Xqtq + Xgqq),05(x,u) = T, (ka(—v)
qo

The estimated values of the constants in matrices 4,, B, and using
the nominal operating point by calculating the values of the
matrices C, and D, using the Jacobian block in the MATLAB.

disturbance
controller

process

" x = Ax + Bu

¥ =Cx+Du

reference Kr sy

2)

-K

Figure I State feedback Control System.

D. State Feedback Controller

Controlling dynamic systems requires the use of a state feedback
controller, a fundamental concept in control theory and
engineering. It is an approach for controlling systems that entails
using direct feedback from the system’s internal state variables

to alter behavior to achieve desired performance [13].

Fig. 1 demonstrates a conventional control system state feedback
diagram. The reference input, r, the controller components, K and
k.., the process disturbances, d, and the process dynamics, which
are believed to be linear, make up the complete system. The
feedback controller’s goal is to regulate the system’s output y, so
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that, in situations of disturbances and uncertainty in the process
dynamics, it follows the reference input.
The feedback can be expressed as follows if it is restricted to be
linear
u, =k, r —kx (26)

Following the application of the feedback (26) to the linear system
of (24), the closed loop system is produced as follows

x = (A, — Bok)x + Bykr 27)
Let pq,uy,...,un, be the desired eigenvalues. K must be
computed such away that the closed loop eigenvalues should be
Ui, Uy .-, Uy For the closed-loop system, in particular, the
equilibrium point and steady-state output are given by

xe = (A, — Bok) 1B kr (28)

ye = CyX, (29)
Thus, k, ought to be selected so that ye = r (the intended output
value) is achieved. K, is a scalar, thus it can easily be solved to
demonstrate

1
kr = — 30
r CO(AO - Bok)_lBo (39)

Keep in mind that k, is the exact opposite of the closed loop
system’s zero frequency gain. Therefore, the dynamics are tailored
for the closed-loop system to achieve the objective by using the
gains K and k,..

In the context of this study, the Lyapunov Function Candidate
(LFC), designated as V (x), which is a key notion in the analysis
of dynamic systems. An LFC has the following characteristics:

(1) Continuity: V (x) should be real-valued continuous function.
(2) Positive Definiteness: V (x) > 0, it should be a positive
definite function.

(3) Negative Definiteness: 'V (x) < 0, it should be a negative
definite function.

In this study, the simple linear model is as follows:

x =A,x + Byu (31)
y = Cox (32)
It can confidently be simplified by the control law for the purposes
of the stability proof because the pre-gain factor k,. has little effect
on system stability, leading to the reduced formulation shown
below.

u; = —Kx

(33)
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Substituting the values from equation 33 into equation 31 the

following expression for further analysis is obtained.

x =A,x + B,(—Kx) (34)

x = (4, — B,K)x (35)

For analysis purposes, the Lyapunov function is defined as
follows:

V==xTx (36)

Indeed, V (x) is assumed to be a positive definite function in the
analysis, satisfying V (x) > 0.

V= %(x.Tx +xT%) @37)
V= %(Zx'Tx) (38)
V= (xTx) (39)

Substituting the values from Equation 35 into Equation 39, the
results are expressed as follows:

7 = ((4, — B,K)x) x) (40)

V =xT(A — K"TBDx (41)
If the matrix K is chosen such that the eigenvalues of (A —
BK) < 0, then it can be asserted that V < 0.

E. Control Law for Non-Linear model

The control law developed in this study exhibits a surprising
quality in that it successfully reduces the effects of the system
dynamics’ intrinsic nonlinearity [14]. The resulting control
method produces a system response that closely resembles
linearity by deftly canceling out the nonlinear terms as explained
in equation 24. This distinctive feature offers a substantial addition
to the field of nonlinear control and lays the groundwork for
further research and application in complex systems. It also holds
tremendous potential for improving system stability and
performance. The following control law has been derived:

u; = kv —kx — (BYB,) " 'BY 06 (x,u) (42)

Whereas,
g =B, (B(?Bo)_lBg)_l(‘l'S)
The identity matrix is represented by the equation:

B,(BJB,)™'Bjo = I(44)
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Equations 42 and 43 can be substituted for equation 24, which
causes a transformation that effectively cancels out the
nonlinearity terms and yields a shortened expression that
represents the intended linear behavior. This tactical substitution
is crucial to this study since it helps to go around the system
dynamics’ complexity and concentrate on the more manageable
linear features for further research and control scheme
development. Nonlinearities can be generically divided into
continuous and discontinuous categories. They can also be
categorized as known or unknown [15].

Assumption 1: It is assumed that the non-linearity 8 (x, ) in the
system is Continuous.

Substituting (42) and (43) into (24) simplifies it and eliminates
nonlinearity, yielding:

% = A, x + B(k,7 — kx — (BTB) 00 (x,u)) + 0(x,u)

% = (4, — Boyk)x + Byk, — B,(BYB,) *Bl 66 (x,u) + 6(x,u) (46)

The equation has the following form once nonlinearity
components are eliminated:

x = (4, — Bok)x + Bk, (47)
This form represents a linear term in the analysis and is equivalent
to (29).
The development of phase portraits based on various initial
conditions allows one to illustrate the stability of the system.
These visual depictions give users a concrete way to evaluate the
system’s performance across various initial states. The empirical
evidence is shown to support the stability of the system by
analyzing trajectory patterns and convergence, which also
supports the correctness of the theoretical approach [16]. Phase
portraits, in this research, essentially act as a crucial link between
theory and empirical validation. Fig. 2-5 depicts the phase portrait
of all possible state combinations in this study in vivid detail.
Notably, the convergence of all states towards the equilibrium
points at zero is demonstrated by this thorough visual phase
portrait, which provides persuasive proof. The stability of the
designed control law is unmistakably highlighted by this collective
behavior, providing strong empirical support for its effectiveness
in maintaining system stability. The conceptual foundations of this
research are strengthened by this empirical validation, which
increases confidence in the efficiency of the suggested control
technique to preserve system stability.
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Figure 5 Phase portrait between eq, ed, efq.

E. Neuro Fuzzy Controller

An effective computing system that combines fuzzy logic and
neural networks, the neuro-fuzzy controller, exhibits improved
flexibility and decision making. In particular, a hybrid learning
technique is used by the adaptive neuro-fuzzy inference systems
(ANFIS), which are motivated by the work of Sugeno and
Tsukamoto [17]. The combination of neural network adaptability
and fuzzy logic makes ANFIS a powerful instrument for smart and
trustworthy control solutions in modern research. ANFIS is
particularly good at handling uncertainty-related problems; it uses
its flexibility to handle complicated situations with imprecise or
unclear data. Despite their strength, neural networks have trouble
processing imprecise data and are not very interpretable. These
drawbacks are addressed by the incorporation of neural networks
into neuro-fuzzy systems, like ANFIS, which improves flexibility
and decision. This hybrid strategy is essential for developing
intelligent and understandable control solutions, especially in
situations involving complicated problems and ambiguous data.

Layer 2 Layer 3 Layer 4 Layer 5

Layer 1
Figure 6 Basic Multilayer Multioutput Neuro-Fuzzy Model.
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The fundamental model of the neuro-fuzzy inference system is
shown in Fig. 6. The fuzzy inference system makes use of the first-
order Sugeno fuzzy model, which has four inputs (iy, i,, i3, and i,)
and four related outputs (04, 0, 03, and 0,). This model

is governed by the following set of rules:

Rulel: If i, is A4, i, is By, i3 is Cy, and i, is Dy, then the output
0, is determined by the equation:
fi = piis + quiz + iz + syl +

Rule2: Ifi; is A,, i, is By, i3 is C,, and i, is D,, then the output
0, is calculated as:
f2 = p2ls + Q2i; + iz + 50, + 4

Rule3: If i, is Az, i, is Bs, i3 is C3, and i, is D5, then the output
05 is determined
using the equation:

fz = p3is + qaiy + 1303 + S3iy + t3

Ruled: If i, is Ay, i, is By, i3 is C4, and i, is D,, then the output
0, is derived from
the equation:

fo = Pals + iy + iz + 50, + 4y

The estimated weights and parameters for various datasets are
represented in (48), which summarizes the outputs of the neuro-
fuzzy inference system. It shows how flexible the system is to
changing data, indicating its capacity to modify internal settings
for optimum performance across various outputs.

1) layer 1

Each input node in this layer serves as an adaptive component that
creates a membership grade corresponding to a linguistic label.
This layer has a fuzzy quality, with iy, i,, i3, and i, acting as the
system’s inputs and O,,, designating the mth node’s output in
layer 1. It should be noted that every adaptive node appears as a
square node with a square function as shown in Eq. 48-51:

O1m = tiy;m form=1234 (48)
Oyn = fipn forn=1234 (49)
010 = Miym foro=1234 (50)
O1p = Wiym forp=1234 (51)
- (1= Wn ym_il) ]
i = ) ) 0 52
Biym (i) = max [mln (Xm v —— (52)

where (W, Xim, Vi) are the parameters of the gaussian bell shaped
membership function represented by eq 53.

Hiym (1) = (53)
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2) layer 2

This layer is used to evaluate the weights connected to each
membership function. It uses input values from the first layer,
designated as i;,,, and performs membership calculations to
represent the fuzzy sets corresponding to the relevant input
variables.

02,m =Wp = .uil,m(il) : .u-iz,n(iz) “Hizo (13) “Hiyp (14)

for m,n,o0,p = 1,2,3,4 e

3) layer 3

Each node in this layer, denoted by a circle with the letters N,
stands for the normalization of the firing intensity from the layer
before. To determine the amount of activation for each fuzzy rule,
this layer performs pre-condition matching. This layer’s node
count is equal to the number of fuzzy rules. Every node figures out
the strength of the i*" rule in relation to the total strength of all
firing rules.

Wy

O3 m =Wp, = for m=1,2,3,4 (55)

For reliability, the outputs of this layer will be referred to as
normalized firing strengths.

4) layer 4

This layer provides the output values O, ,,, which are inferred
using fuzzy rules. The output is a simple product of the first-order
polynomial and the normalized firing rule strength. The node
function is used to express the weighted output of a rule as follows:

Oy = Winfm = Win(Pmis + @iz + iz + Spis + ty) (56)

5) layer 5

This layer, also known as the “output layer” collects all of the
inputs from layer 4 and transforms the results of fuzzy
categorization into precise, distinct values. Eq. 48 instructs the
node on this layer to compute the total of all incoming signals.

4

Wit fir + Wiafiz + Wisfiz + Wisfia
Z Osm = (55)
i=1

Wip + Wip + Wiz + Wiy

For the aim of estimating the membership function, the neuro-
fuzzy controller uses a hybrid learning method that combines the
concepts of least squares estimate and backpropagation. This
original strategy, described in this research, demonstrates the
adaptability and flexibility of controller in obtaining precise and
reliable fuzzy model parameterization. The integrated
visualization is shown for the neuro-fuzzy controller in Fig. 7 that
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has been rigorously trained using dataset data from the output
results of state feedback controllers used in both linear and
nonlinear systems. With the help of empirical data collected across
a range of system dynamics, this figure highlights the crucial role
the neuro-fuzzy controller plays in the system. It also highlights
its adaptability and optimization potential.

Synchronous
Generator

&

Figure 7 Neuro Fuzzy as a controller.

disturbance
Neuro Fuzzy

reference

III. RESULTS

The outcomes of applying state feedback control with a carefully
selected K matrix based on intended pole placement are shown in
Fig. 8. The most important conclusion to draw from these findings
is that all system outputs successfully converge in the direction of
the desired reference step input. This shows that the state feedback
controller for linear system functions effectively.

This effective tracking of the required reference signal highlights
the utility of control strategy in real-world applications. It’s a
noteworthy accomplishment that emphasizes the applicability of
the approach that is used to govern dynamic systems.

System Frequency

Output
— === Target

451

40 - 50 60 70 80
Time(s)

90 100

Figure 9 Neural Network result for f,s.

http://xisdxjxsu.asia

VOLUME 21 ISSUE 11 NOVEMBER 2025

ISSN: 1673-064X

The output responses of a neural network trained using the dataset
produced by the state feedback controller are shown in Fig. 9 -13.
The findings show that there is a need for improvement, even
though the outputs show some degree of tracking to the specified
reference input. Notably, it is seen that the error term and tracking
response converge to the target values quite slowly. As a result, it
was decided that changes were required to improve the system’s
functionality. The addition of a neuro-fuzzy controller then led to
an improvement in tracking accuracy. This effective tracking of
the required reference signal highlights the utility of control
strategy in real-world applications. It’s a noteworthy
accomplishment that emphasizes the applicability of the approach
that is used to govern dynamic systems.

4

Outputs

| I I
o 5 10 15 20 25 30
time

Figure 8 State feedback Linear model results for fsys, 1y, , 0y , P, and Q..
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Figure 10 Neural Network result for I,.
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The output responses of the linearly trained neuro-fuzzy controller
are shown collectively in Fig. 14 - 18. These outcomes clearly

show a noteworthy accomplishment in this research, where a
significant portion of the required output references have been

successfully attained.
This finding reinforces the effectiveness of the control
methodology and confirms its capability of achieving the desired
performance goals. It demonstrates the effective use

of the neuro-fuzzy controller in controlling the system and

provides important insights into the flexibility and precision of the

approach.
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Fig. 19 depicts the outcomes of applying the control law to the
nonlinear system and how well they coincide with the reference
step input. It is crucial to remember that certain errors continue as
a result of transients and residual nonlinearities in the system.
However, these little differences are regarded as acceptable in the
context of this study. They highlight the practical difficulties in
regulating nonlinear systems while also supporting the
effectiveness of control strategy in significantly reducing

these difficulties.
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Figure 19 Controlled Non-Linear model result for fsys, 1y , 0y, , P, and

Qy.

The output responses produced by the neuro-fuzzy controller in
this nonlinear system are completely depicted in the Fig. 20 to 24
that follow. Notably, compared to those of the linear system, the
mean square error (MSE) values in these nonlinear tests are seen
to be higher. The existence of transients inside the nonlinear
system and the persistence of residual nonlinearities are to blame
for this mismatch in MSE. These findings illustrate the complexity
of nonlinear systems and the difficulties they present to control
theories. The neuro-fuzzy controller shows its adaptability and
effectiveness in controlling the nonlinear dynamics, underscoring
the potential of this approach in the context of nonlinear system
control. The performance may show some deviations from the
reference signals as a result of these complexities, but it is
important to emphasize that this is only temporary.
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: ' e The difference in MSE between the linear and nonlinear systems
T e E is seen in Table 1. The nonlinear system, impacted by transients
N \ _;/ | and residual nonlinearities, registers larger MSE whereas the
- \ ; B linear system records lower MSE values. It is remarkable that both
" o 14 E | systems effectively converge towards the required reference
* | — | ‘ | ‘ ] outputs despite this mismatch. This demonstrates the efficiency of
T @ w w e the control technique in controlling the complexity of the
nonlinear system while guaranteeing the achievement of the
5 MSE = 0.5465, RMSIE = 0.7;926 1(ﬁ)rrc)r Meanl= 0.1284:2, Ermror .S(D =0.73188 .
specified performance goals.
4 80 Table 1 Linear and Non-linear error comparison
3
L% 2 j: Outputs Linear Model MSE Non-Linear Model
1 MSE
o ¢ fsys 0.30465 2.3826
"o @ @ w0 s mw % 2 0 2 4 Iy 0.009567 1.4918
0, 0.031592 0.5465
Figure 22 Neuro Fuzzy non-linear model control output for 6y,,. P, 0.003991 0.3416
Q, 0.44256 1.6486
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The reduction in mean square error (MSE) that we found for the
linear model in our study as compared to the nonlinear model
suggests that the neuro-fuzzy controller manages uncertainties and
transients in the linear system well. The model’s underlying
linearity makes a control approach easier to implement, which
enhances output tracking performance. But in the nonlinear model,
the neuro-fuzzy controller finds it difficult to handle the
complexity that nonlinearities bring, which results in a relatively
higher MSE. In real-world situations when there are disruptions
and outside influences, the neuro-fuzzy system’s flexibility
becomes essential. Although neuro-fuzzy controllers are excellent
at managing uncertainties because they dynamically modify
parameters in response to input data, the addition of nonlinearities,
disturbances, and sensor noise can affect the mean square error
(MSE) and even raise it because of the difficulties presented by
nonlinear dynamics and outside factors. The resulting MSE
depends on how well the system adjusts to this complexity and
varies according to the details of the particular nonlinear plant as
well as outside variables.

IV. NOVELTY

Our work presents a novel method for controlling synchronous
generators through the use of an Artificial Neuro-Fuzzy Inference
System with multiple inputs and multiple outputs. Compared with
previous approaches based on traditional neural networks, our
technology is more effective and provides better tracking and
control. Since synchronous generators account for 95% of the
world’s energy production, this breakthrough is essential because
it highlights the possibility of long-term, significant efficiency
improvements and savings.

V. CONCLUSION

In conclusion, this research explored the use of state feedback and
neuro-fuzzy controllers in the control of both linear and nonlinear
systems. The results show how this control schemes operate
differently from one another.

The state feedback controller excels at offering accurate reference
tracking with little error for linear systems. It is a reliable option
for situations involving linear systems.

On the other hand, nonlinear systems pose unique problems such
as transient responses and persistent nonlinearities. The neuro-
fuzzy controller, however, exhibits a remarkable capacity to adjust
to these difficulties. The nonlinear system eventually converges to
the desired reference outputs despite the existence of a
significantly higher mean square error (MSE), highlighting the
adaptability and durability of this control strategy.

Future directions for research could include refining non-linear
system control strategies, examining hybrid control techniques,
applying the findings to real-world scenarios, expanding on
system identification, creating reliable control protocols, and
investigating the use of cutting-edge neural network architectures
like Long Short-Term Memory (LSTM) and Recurrent Neural
Networks (RNN). By utilizing deep learning and sequence
modelling to improve control system performance, these subjects
provide intriguing avenues for further research and practical
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application, ultimately propelling the field of control theory
forward.

NOMENCLATURE
a Angle of the internal rotor
fo Rate at which the HV bus’s voltage phase
changes
wWg The base speed of the rotor in rad/s
o) The rotor speed per unit
D, The rotor’s damping constant
M The inertia moment
T Constant for Mechanical torque
Tao, Tyo Direct-axis and quadrature-axis of coil
Xa, Xq d and g-axis synchronous reactance
X'0.X'g d and g-axis transient reactance
€fq Excitation voltage of the generator field
eq, eq Emf in the coil’s d and q axes
T,y Automatic regulator’s time constant
K, Automatic gain of a voltage regulator
Vi Magnitude of the stator voltage
T, Constant for electric torque
n Nominal value
Ts, Tr Transformer armature and winding resistance
Xr Transformer leakage reactance
Va, Vg d and g-axis voltage
v HV bus voltage magnitude
Ly, B,y The magnitude and phase of current
P, Q, Power, Both Active and Reactive
fsys Frequency of system
Vyef Reference constant of an automatic voltage
regulator
A Model uncertainties
I, Identity matrix of 2 x 2

REFERENCES

[1] Ritonja J. Robust and adaptive control for synchronous generator’s operation
improvement. Automation and Control. 2020;.

[2] Kasilingam G, Pasupuleti J. Bbo algorithm-based tuning of pid controller for
speed control of synchronous machine. Turkish Journal of Electrical
Engineering and Computer Sciences. 2016;24(4):3274-3285.

[3] Kobayashi T, Yokoyama A. An adaptive neuro-control system of
synchronous generator for power system stabilization. IEEE transactions on
energy conversion. 1996;11(3):621-630.

[4] Syahputra R, Soesanti I. Control of synchronous generator in wind power
systems using neuro-fuzzy approach. In: Proceeding of International
Conference on Vocational Education and Electrical Engineering (ICVEE);
2015. p. 187-193.

[5] Higuchi Y, Yamamura N, Ishida M, et al. An improvement of performance
for small-scaled wind power generating system with permanent magnet type
synchronous generator. In: 2000 26th Annual Conference of the IEEE
Industrial Electronics Society. IECON 2000. 2000 IEEE International
Conference on Industrial Electronics, Control and Instrumentation. 21st
Century Technologies; Vol. 2; IEEE; 2000. p. 1037-1043.

[6] Hiskens IA, Pai M. Hybrid systems view of power system modelling. In:
2000 IEEE International Symposium on Circuits and Systems (ISCAS); Vol.
2; IEEE; 2000. p. 228-231.

74-86


http://xisdxjxsu.asia/

Journal of Xi’an Shiyou University, Natural Science Edition

[71 Zaker B, Gharehpetian GB, Karrari M, et al. Simultaneous parameter
identification of synchronous generator and excitation system using online
measurements. IEEE Transactions on Smart Grid. 2015;7(3):1230-1238.

[8] Qing X, Karimi HR, Niu Y, et al. Decentralized unscented kalman filter based
on a consensus algorithm for multi-area dynamic state estimation in power
systems. International Journal of Electrical Power & Energy Systems.
2015;65:26-33.

[9] Pal B, Chaudhuri B. Robust control in power systems. Springer Science &
Business Media; 2006.

[10] Phadke AG, Kasztenny B. Synchronized phasor and frequency measurement
under transient conditions. IEEE transactions on power delivery.
2008;24(1):89-95.

[11] Singh AK, Pal BC. Decentralized control of oscillatory dynamics in power
systems using an extended lqr. IEEE Transactions on Power Systems.
2015;31(3):1715-1728.

[12] Ghahremani E, Kamwa I. Local and wide-area pmu-based decentralized
dynamic state estimation in multi-machine power systems. IEEE
Transactions on Power Systems. 2015; 31(1):547-562.

[13] Yue D, Han QL, Peng C. State feedback controller design of networked
control systems. In: Proceedings of the 2004 IEEE International Conference
on Control Applications, 2004.; Vol. 1; IEEE; 2004. p. 242-247.

[14] Bugajski DJ, Enns DF. Nonlinear control law with application to high angle-
of-attack  flight. Journal of Guidance, Control, and Dynamics.
1992;15(3):761-767.

[15] Natsiavas S. Analytical modeling of discrete mechanical systems involving
contact, impact, and friction. Applied Mechanics Reviews.
2019;71(5):050802.

[16] Dangelmayr G, Neveling M, Armbruster D. Structurally stable phase
portraits for the five-dimensional lorenz equations. Zeitschrift fur Physik B
Condensed Matter. 1986;64:491-501.

[17] Sandhu GS, Rattan KS. Design of a neuro-fuzzy controller. In: 1997 IEEE
international conference on systems, man, and cybernetics. Computational
cybernetics and simulation; Vol. 4; IEEE; 1997. p. 3170-3175.

http://xisdxjxsu.asia

VOLUME 21 ISSUE 11 NOVEMBER 2025

ISSN: 1673-064X

AUTHORS

Raheel Aslam — Master of Science from Department of
Electrical Engineering, Pakistan Institute of Engineering and
Applied Sciences, Islamabad, currently doing Ph.D. at School of
Automation, South China University of Technology, Guangzhou,
Guangdong, China, ORCID iD: 0009-0004-5585-4051.

Alisha Khalid — Studying Ph.D. at School of Optoelectronic
Engineering, Changchun University of Science and Technology,
Zhongshan, Guangdong, China. ORCID iD: 0000-0003-4273-
7783.

Abid Aman- Studying Ph.D. at School of Automation, South
China University of Technology, Guangzhou, Guangdong,
China. ORCID iD: 0009-0002-3034-785X.

Toqeer Ahmed — Studying Ph.D. at School of Automation,
South China University of Technology, Guangzhou, Guangdong,
China.

Kanwal Wagqar — Studying Ph.D. at School of Automation,
South China University of Technology, Guangzhou, Guangdong,
China. ORCID iD: 0000-0001-6599-3494

Mohammad Rasel Amin— Studying Ph.D. at School of
Automation, South China University of Technology, Guangzhou,
Guangdong, China. ORCID iD: 0009-0005-0152-0264

Correspondence Author — Raheel Aslam- Master of Science
from Department of Electrical Engineering, Pakistan Institute of
Engineering and Applied Sciences, Islamabad, currently doing
Ph.D. at School of Automation, South China University of
Technology, Guangzhou, Guangdong, China, ORCID iD: 0009-
0004-5585-4051.

74-86


http://xisdxjxsu.asia/

