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Abstract- Improving the efficiency of synchronous generators is 

crucial for achieving significant energy savings in global 

electricity production, given that they contribute to approximately 

95% of the world’s power generation. This article explores the 

topic of controlling synchronous generators, providing a thorough 

theoretical foundation and simulation-based control strategies 

along with a complete framework. The synchronous generator 

model is first linearized and then state feedback control strategies 

are used. The research smoothly shifts to exploring neuro-fuzzy 

control, noting that linear models are not sufficient for describing 

the complexities observed in the 

behavior of synchronous generators. The neuro-fuzzy controller 

was developed to address the system’s non-linearities. Its 

improved performance is a result of its ability to simulate 

complex, non-linear systems better than conventional approaches. 

Nonlinearities are addressed by combining neuro-fuzzy 

intelligence with linear control. Stability and precision are 

improved by a control law that has been derived to counteract 

nonlinearities. The study highlights the neuro-fuzzy controller’s 

adaptive characteristics in obtaining accurate output control under 

difficult nonlinear behavior in the generator system. 

Index Terms- Neuro-Fuzzy, State feedback, Linear model, 

Nonlinear model, Lyapunov Stability 

I. INTRODUCTION 

ynchronous generators are recognized for their longevity and 

dependability in providing steady power under many 

circumstances, making them essential in fulfilling the increasing 

demands for electricity worldwide [1]. Even with their 

importance, these generators are still difficult to fully optimize for 

grid stability and energy efficiency. Due to their nonlinear and 

dynamic character, they require complex control systems, which 

have historically relied on linearized models for stabilization. 

Nevertheless, standard methods are unable to fully capture the 

complex nonlinear behavior, which hinders achieving peak 

performance. Resolving this constraint is essential to guaranteeing 

the efficient operation and accurate control of electrical output in 

power generation 

systems. A neuro-fuzzy is an advanced control system that 

improves the accuracy and flexibility of a system for controlling, 

by merging fuzzy logic and neural network techniques. The 

system can efficiently manage uncertainties and nonlinearities 

thanks to this hybrid method, which also optimizes generator 

performance under a range of operating situations.in leading 

journals to complete their grades. In addition, the published 

research work also provides a big weight-age to get admissions in 

reputed varsity. Now, here we enlist the proven steps to publish 

the research paper in a journal.  

In the literature, the comparison to Particle Swarm Optimization 

and conventional methods, including the use of a Biogeography-

Based Optimization (BBO) algorithm to optimize PID parameters 

in a Power System Stabilizer (PSS) showed superior performance 

in minimizing low-frequency oscillations in a simulated single 

machine infinite bus system [2]. However, the BBO algorithm 

could have drawbacks like slow convergence and sensitivity in 

initial conditions. The neuro-fuzzy controller, on the other hand, 

uses its adaptive learning potential to improve performance and 

get past the problems with BBO. It turns out to be more accurate 

and efficient for controlling synchronous generators. In a related 

study, digital time simulations for a one-machine infinite bus test 

power system demonstrated that an Adaptive Neuro-Control 

System (ANCS) using neural networks for nonlinear generator 

control was more adaptable and effective in improving system 

damping than linear optimal and self-tuning regulators [3]. 

However there could be problems with overfitting and 

computational complexity with the ANCS. On the other hand, a 

neuro-fuzzy controller works better and more accurately for 

controlling synchronous generators. It does this by utilizing its 

enhanced adaptability to manage uncertainties and nonlinearity, 

which makes it a good substitute for ANCS in some situations. 

The study smoothly combines a particular linearized model for 

synchronous generators with the neuro-fuzzy controller. The 

literature review emphasizes neuro-fuzzy control as a 

comprehensive strategy for controlling both linear and nonlinear 

components. Its superiority is confirmed by comparative analysis, 

providing a cost-effective way to optimize power generation 

control while resolving issues with traditional methods. [4]. 

The study develops a control law to reduce the nonlinearities of 

synchronous generators, enhancing accuracy and stability. An 

effective method for nonlinear dynamics 

is obtained by combining this with state feedback control. The 

adaptive characteristics of the neuro-fuzzy controller are used to 
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show precise output control in difficult nonlinear circumstances. 

A complete solution for synchronous generator performance 

optimization is provided by this integrated method. [5]. 

 

Given the aforementioned steps, the following goals are stated for 

this research 

paper: 

(1) To analyze and contrast state feedback control’s efficiency for 

linearized synchronous generator models. 

(2) To create and put into use a neuro-fuzzy controller for the 

linearized model, allowing for precise output regulation and 

adaptive control. 

(3) To create a control law that efficiently reduces nonlinearities 

in the behavior of synchronous generators. 

(4) To integrate state feedback control with the nonlinear control 

law for improved stability. 

(5) To use the neuro-fuzzy controller on the controlled nonlinear 

model and determine whether it can sustain the necessary 

performance levels under nonlinear circumstances.  

  

II. PROBLEM FORMULATION 

The synchronous generator and issue statement is modeled both 

linearly and nonlinearly in this section.  

 

A. Dynamic Modeling 

 

One of the most crucial aspects of modeling power systems is the 

modeling of synchronous generators. Several models are put forth 

in the literature [6] depending on the information that is available 

about the system. Due to its low computational expenses, 

decentralization is becoming more and more important in multi-

machine scenarios. Local implementation of the state estimate 

technique would be made possible by decentralization. System 

partitioning and the boundary of subsystems are essential to the 

decentralization process [7][8]. Furthermore, many decentralized 

synchronous machine models are employed, including the 

transient and sub-transient models [6][9]. The state equations 

listed below describe the characteristics of the transient 

synchronous machine model that is employed in this study. 

 

                                     𝛼̇ = 𝜔B(𝜔 − 1 − 𝑓𝜃)                            (1) 

 

 

                             𝜔̇ =
1

𝑀
[𝑇m − 𝑇e − 𝐷r(𝜔 − 1)                       (2) 

 

 

where 𝜔𝐵 is the starting value for 𝜔, 𝜔 is the per unit speed of the 

rotor, and 𝑓𝜃 is the rate at which the angle of the terminal voltage 

phasor is changing. 𝛼  represents the angle of the generator’s 

internal rotor with regard to the terminal voltage phasor, 𝑀 is the 

mass inertia of the rotor, 𝑇𝑚 is the mechanical torque produced by 

the turbine driving the generator, 𝑇𝑒 is the electrical torque related 

to the power that the generator is required to supply and 𝐷𝑟  is the 

coefficient for damping, to smooth our 𝜔 oscillations in transient 

conditions. These equations, often known as “swing equations” 

are crucial for stability. Conceptually, 𝜔  and power system 

frequency are linked [10], and any changes to the power network 

have an impact on 𝑓𝜃 and hence, 𝑇𝑒.  

 

The following equations describe how the rotor of the generator 

works to generate voltage in the stator: 

 

𝐸𝑞̇ =
1

𝑇do
{𝐸fd − 𝐸q − (𝑋d − 𝑋d

′ ) [−𝜄d −
𝑘d2

𝑋d
′ − 𝑋ls

(−(𝑋d
′ − 𝑋ls)𝜄d − 𝐸q)]} (3)

     𝐸𝑑̇ =
1

𝑇qo
{−𝐸d − (𝑋q − 𝑋q

′ ) [−𝜄q −
𝑘q2

𝑋q
′ − 𝑋ls

((𝑋q
′ − 𝑋ls)𝜄q − 𝐸d)]}      (4)

                            𝐸𝑓𝑑
̇ =

1

𝑇A

[𝑘A(𝜈ref − 𝜈t) − 𝐸fd]                                                     (5)

 

 

Whereas, 

 

                   𝑇e = 𝑘q1𝐸d𝜄d + 𝑘d1𝐸q𝜄q + (𝑋d
′ − 𝑋q

′)𝜄d𝜄q                                          
  

(6)

                   [
𝜄d
𝜄q

] = 𝑧−1 [
𝑟𝑠 −𝑋q

′

𝑋d
′ 𝑟𝑠

] [
𝑘q1𝐸d − 𝑛𝜈d

𝐾d1𝐸q − 𝑛𝜈q
]                                        (7)

 

                  𝑧−1 = 𝐼2 + 𝑛
2
[

𝑟𝑠 𝑋q
′

−𝑋d
′ 𝑟𝑠

]

−1

[
𝑟𝑇 𝑋T

−𝑋T 𝑟𝑇
]                                  (8)

 

                 [
𝜈td

𝜈tq
] = 𝑛

2
[

𝑟𝑇 𝑋T

−𝑋T 𝑟𝑇
] [

𝜄d
𝜄q

] + 𝑛 [
𝜈d

𝜈q
]                                             (9)

 

 

 

The direct axis and quadrature axis voltages are calculated as 

 

 

𝜈t = √𝜈𝑡𝑑
2 + 𝜈𝑡𝑞

2 ,    𝜈𝑑 = −𝜈sin𝛼,     𝜈𝑞 = 𝜈cos 𝛼

𝜈 = −(𝜈𝜈 − 𝜈𝑦),   𝑓𝜃 = −(𝑓𝑣 − 𝑓𝑦),    𝛼 = 𝛿 − 𝜃

 

 

It is evident that this state variable uses the internal rotor angle (𝛼) 

rather than the rotor angle (𝛿). This choice was based on the fact 

that, in a model of a multimachine power system, each generator’s 

rotor angle (𝛿𝑖) and stator voltage phase (𝜃𝑖), which are crucial for 

the generator’s internal parameters, are determined with reference 

to a common reference frame. Nevertheless, it would be 

counterproductive in a decentralized setting to know the values of 

these figures without also being aware of the common reference 

frame [11]. To deal with this, the internal rotor angle might be 

utilized as a state variable. 

 

B. Output Equations 

 
The measurement outputs at the HV bus are the active power 

output (𝑃𝑦), the reactive power output (𝑄𝑦), the current 

magnitude (𝜄𝑦), and its phase with respect to the voltage phasor 

(𝜃𝜄𝑦).The stator current measured phase (𝜃𝜄𝑦) and its measured 

magnitude (𝜄𝑦) with respect to the voltage phasor are the 

measurements that are regarded as system outputs. The following 

equations yield these: 
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                                 𝜄𝑦 = 𝑛√𝜄𝑞
2 + 𝜄𝑑

2                                                (10)

                                 𝜃𝜄𝑦 = 𝛼 + tan−1 (
𝜄𝑑
𝜄𝑞

)                                  (11)

 

 

 
and (𝜄𝑑) , (𝜄𝑞) are given by (7) and due to its close relationship to 

speed, frequency measurement (𝑓𝑠𝑦𝑠 ) has also been taken into 

account; it’s per unit value is: 

 

                                         𝑓𝑠𝑦𝑠  =  𝜔                                                (12) 

 

Attempting to increase the accuracy of the unknown input 

estimation can be facilitated by further measurements [12]. 

Regarding the measurable quantities, the decentralized model used 

here permits the use of extra quantities as measurements (unlike, 

say, the model in [12]), however this depends on the model that is 

applied. Since this can be done using the decentralized model 

employed here, the prior case studies have 

been reexamined, taking into account the additional measurements 

that can be made by Phase Measuring Units (PMUs) (active and 

reactive power) [12]. The following are 

the measurement functions for these: 

 

[𝑃𝑦 = 𝐸𝑑𝜄𝑑 + 𝐸𝑞𝜄𝑞 + (𝑋𝑑
′ − 𝑋𝑞

′ )𝜄𝑑𝜄𝑞 − (𝜄𝑑
2 + 𝜄𝑞

2)(𝑅𝑠 + 𝑛𝑅𝑇) (13) 

 

 

[𝑄𝑦 = 𝐸𝑑𝜄𝑞 − (𝑋𝑞
′ + 𝑛

2
𝑋T)𝜄𝑞

2 − (𝑋𝑑
′ + 𝑛

2
𝑋T)𝜄𝑑

2 − 𝐸𝑞𝜄𝑑           (14) 

 

where 𝑃𝑦 and 𝑄𝑦 represent the generator’s terminal bus-measured 

active and reactive power, respectively. The ratios of constants 

given in above equations are given as following: 

 

 

                                       𝑘𝑑1 =
(𝑋𝑑

′′ − 𝑋𝑙𝑠)

(𝑋𝑑
′ − 𝑋𝑙𝑠)

                                           (15) 

 

                                       𝑘𝑑2 =
(𝑋𝑑

′ − 𝑋𝑑
′′)

(𝑋𝑑
′ − 𝑋𝑙𝑠)

                                           (16) 

 

                                       𝑘𝑞1 =
(𝑋𝑞

′′ − 𝑋𝑙𝑠)

(𝑋𝑞
′ − 𝑋𝑙𝑠)

                                          (17) 

 

                                      𝑘𝑞2 =
(𝑋𝑞

′ − 𝑋𝑞
′ )

(𝑋𝑞
′ − 𝑋𝑙𝑠)

                                           (18) 

 

By taking into account 𝑋𝑞
′′  =  𝑋𝑞

′  and 𝑋𝑑
′′  =  𝑋𝑑

′ , it is possible to 

construct the transient model since 𝑘𝐴  =  1 , 𝑘𝑞1  =  𝑘𝑑1  =  1 

and 𝑘𝑞2  =  𝑘𝑑2  =  0 in this situation the Eqns. (3),(4),(5),(6),(7) 

becomes 

 

                 

𝐸𝑞̇ =
1

𝑇do

{𝐸fd − 𝐸q − (𝑋d − 𝑋d
′ )[−𝜄d]}                        (19)

 

𝐸𝑑̇ =
1

𝑇qo

{−𝐸d − (𝑋q − 𝑋q
′ )[−𝜄q]}                                (20)

 

𝐸𝑓𝑑
̇ =

1

𝑇A

[(𝜈ref − 𝜈t) − 𝐸fd]                                             (21)

 
𝑇e = 𝐸d𝜄d + 𝐸q𝜄q + (𝑋d

′ − 𝑋q
′ )𝜄d𝜄q                                 (22)

 

[
𝜄d
𝜄q

] = 𝑍−1 [
𝑟𝑠 −𝑋q

′

𝑋d
′ 𝑟𝑠

] [
𝐸d − 𝑛𝜈d

𝐸q − 𝑛𝜈q
]                                 (23)

 

 

 

C. State Space Representation 

The following are the state, input, and output vectors: 

 

𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]T = [𝛼 𝜔 𝐸𝑞 𝐸𝑑 𝐸𝑓𝑑]T

 
𝑢 = [𝑢1 𝑢2 𝑢3 𝑢4]T = [𝑇𝑚 𝜈𝑟𝑒𝑓 𝜈 𝑓𝜃]T

 
𝑦 = [𝑦1 𝑦2 𝑦3 𝑦4 𝑦5]T = [𝑓𝑠𝑦𝑠 𝜄𝑦 𝜃𝜄𝑦 𝑃𝑦 𝑄𝑦]T

 

 

 

Using the aforementioned variables to build the state space model, 

the following model is derived 

 

                                   𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝜃(𝑥, 𝑢)                                (24) 

 

                                    𝑦 = 𝐶𝑥 + 𝐷𝑢                                             (25) 

 

where the disturbance vector, 𝑑 ∈  𝑅𝑘𝑑, is present. The matrices 

𝐴̅, 𝐵̅, 𝐶̅  and 𝐷̅  can be represented as uncertain matrices with 

compatible dimensions. 

 

𝐴 = 𝐴o + 𝐴o,        𝐵 = 𝐵o + 𝐵o,
 

𝐶 = 𝐶o + 𝐶o, 𝐷 = 𝐷o + 𝐷𝑜 ,
 

 

Consequently, after being rearranged in terms of the state and the 

input vector, The linear terms of the state equations yield the 𝐴𝑜 

and 𝐵𝑜 matrices, which are given as follows: 
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𝐴o =

[
 
 
 
 
 
 
 
 
 
0 𝜔𝐵 0 0 0

0
𝐷𝑟

𝑀
0 0 0

0 0 0
1

𝑇𝑞𝑜

0

0 0 −
1

𝑇𝑑𝑜

0
1

𝑇𝑑𝑞

0 0 0 0 −
1

𝑇𝐴]
 
 
 
 
 
 
 
 
 

𝐵o =

[
 
 
 
 
 
 
0 0 0 𝜔𝐵

1

𝑀
0 0 0

0 0 0 0
0 0 0 0

0
KA

𝑇𝐴

0 0
]
 
 
 
 
 
 

 

the output equations around the nominal operating point have been 

linearized, 𝐶𝑜 and 𝐷𝑜 are obtained. Given below are the function 

𝜃(𝑥, 𝑢)  = [𝜃1(𝑥, 𝑢)𝜃2(𝑥, 𝑢)𝜃3(𝑥, 𝑢)𝜃4(𝑥, 𝑢)𝜃5(𝑥, 𝑢)]𝑇 

 

Whereas, 

 

𝜃1(𝑥, 𝑢) = 0, 𝜃2(𝑥, 𝑢) =
−𝑇𝑒

𝑀
, 𝜃3(𝑥, 𝑢) =

1

𝑇𝑑𝑜

(𝑋𝑑𝑙𝑑 + 𝑋
𝑑𝑙𝑑
′ )

𝜃4(𝑥, 𝑢) =
1

𝑇𝑞𝑜

(−𝑋𝑞𝜄𝑞 + 𝑋𝑞
′ 𝜄𝑞), 𝜃5(𝑥, 𝑢) =

1

𝑇𝐴

(𝑘𝐴(−𝜈𝑡))
 

 

The estimated values of the constants in matrices 𝐴𝑜, 𝐵𝑜 and using 

the nominal operating point by calculating the values of the 

matrices 𝐶𝑜 and 𝐷𝑜 using the Jacobian block in the MATLAB. 

 

 
Figure 1 State feedback Control System. 

D. State Feedback Controller 

 

Controlling dynamic systems requires the use of a state feedback 

controller, a fundamental concept in control theory and 

engineering. It is an approach for controlling systems that entails 

using direct feedback from the system’s internal state variables 

to alter behavior to achieve desired performance [13]. 

Fig. 1 demonstrates a conventional control system state feedback 

diagram. The reference input, 𝑟, the controller components, 𝐾 and 

𝑘𝑟, the process disturbances, 𝑑, and the process dynamics, which 

are believed to be linear, make up the complete system. The 

feedback controller’s goal is to regulate the system’s output 𝑦, so 

that, in situations of disturbances and uncertainty in the process 

dynamics, it follows the reference input. 

The feedback can be expressed as follows if it is restricted to be 

linear 

 

                                               𝑢1 = 𝑘𝑟𝑟 − 𝑘𝑥                                    (26) 

 

Following the application of the feedback (26) to the linear system 

of (24), the closed loop system is produced as follows 

 

                                     𝑥̇ = (𝐴𝑜 − 𝐵𝑜𝑘)𝑥 + 𝐵𝑜𝑘𝑟                          (27) 

 

Let 𝜇1, 𝜇2 , . . . , 𝜇𝑛  be the desired eigenvalues. 𝐾  must be 

computed such away that the closed loop eigenvalues should be 

𝜇1, 𝜇2 , . . . , 𝜇𝑛  For the closed-loop system, in particular, the 

equilibrium point and steady-state output are given by 

 

                                    𝑥𝑒 = (𝐴𝑜 − 𝐵𝑜𝑘)−1𝐵𝑜𝑘𝑟                            (28) 

 

                                                 𝑦𝑒 = 𝐶𝑜𝑥𝑒                                               (29) 

 

Thus, 𝑘𝑟 ought to be selected so that 𝑦𝑒 =  𝑟 (the intended output 

value) is achieved. 𝐾𝑟  is a scalar, thus it can easily be solved to 

demonstrate 

 

                              𝑘𝑟 = −
1

𝐶𝑜(𝐴𝑜 − 𝐵𝑜𝑘)−1𝐵𝑜

                                (30) 

 

Keep in mind that 𝑘𝑟  is the exact opposite of the closed loop 

system’s zero frequency gain. Therefore, the dynamics are tailored 

for the closed-loop system to achieve the objective by using the 

gains 𝐾 and 𝑘𝑟. 

In the context of this study, the Lyapunov Function Candidate 

(LFC), designated as 𝑉 (𝑥), which is a key notion in the analysis 

of dynamic systems. An LFC has the following characteristics: 

 

(1) Continuity: 𝑉 (𝑥) should be real-valued continuous function. 

(2) Positive Definiteness: 𝑉 (𝑥)  >  0 , it should be a positive 

definite function. 

(3) Negative Definiteness: ˙𝑉 (𝑥)  <  0, it should be a negative 

definite function. 

 

In this study, the simple linear model is as follows: 

 

                                             𝑥̇ = 𝐴𝑜𝑥 + 𝐵𝑜𝑢                                     (31) 

 

                                                   𝑦 = 𝐶𝑜𝑥                                            (32) 

 

It can confidently be simplified by the control law for the purposes 

of the stability proof because the pre-gain factor 𝑘𝑟 has little effect 

on system stability, leading to the reduced formulation shown 

below. 

 

                                                 𝑢1 = −𝐾𝑥                                          (33) 
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Substituting the values from equation 33 into equation 31 the 

following expression for further analysis is obtained. 

 

                                      𝑥̇ = 𝐴𝑜𝑥 + 𝐵𝑜(−𝐾𝑥)                                    (34) 

 

                                          𝑥̇ = (𝐴𝑜 − 𝐵𝑜𝐾)𝑥                                    (35) 

For analysis purposes, the Lyapunov function is defined as 

follows: 

 

                                                𝑉 =
1

2
𝑥𝑇𝑥                                           (36) 

 

Indeed, 𝑉 (𝑥) is assumed to be a positive definite function in the 

analysis, satisfying 𝑉 (𝑥)  >  0. 
 

                                        𝑉̇ =
1

2
(𝑥𝑇̇𝑥 + 𝑥𝑇𝑥̇)                                      (37) 

                                             𝑉̇ =
1

2
(2𝑥𝑇̇𝑥)                                            (38) 

                                               𝑉̇ = (𝑥𝑇̇𝑥)                                                (39) 

 

 

Substituting the values from Equation 35 into Equation 39, the 

results are expressed as follows: 

 

                                    𝑉̇ = ((𝐴𝑜 − 𝐵𝑜𝐾)𝑥)
𝑇
𝑥)                                 (40) 

 

                                    𝑉̇ = 𝑥𝑇(𝐴𝑜
𝑇 − 𝐾𝑇𝐵𝑜

𝑇)𝑥                                (41) 

 

If the matrix 𝐾  is chosen such that the eigenvalues of (𝐴 −

 𝐵𝐾)  <  0, then it can be asserted that 𝑉̇ ≤ 0. 

 

E. Control Law for Non-Linear model 

 

The control law developed in this study exhibits a surprising 

quality in that it successfully reduces the effects of the system 

dynamics’ intrinsic nonlinearity [14]. The resulting control 

method produces a system response that closely resembles 

linearity by deftly canceling out the nonlinear terms as explained 

in equation 24. This distinctive feature offers a substantial addition 

to the field of nonlinear control and lays the groundwork for 

further research and application in complex systems. It also holds 

tremendous potential for improving system stability and 

performance. The following control law has been derived: 

 

                  𝑢1 = 𝑘𝑟𝑟 − 𝑘𝑥 − (𝐵𝑜
𝑇𝐵𝑜)

−1𝐵𝑜
𝑇𝜎𝜃(𝑥, 𝑢)                      (42) 

 

Whereas, 

 

𝜎 = 𝐵𝑜(𝐵𝑜
𝑇𝐵𝑜)

−1𝐵𝑜
𝑇)−1(43) 

 

The identity matrix is represented by the equation: 

 

𝐵𝑜(𝐵𝑜
𝑇𝐵𝑜)

−1𝐵𝑜
𝑇𝜎 = 𝐼(44) 

 

Equations 42 and 43 can be substituted for equation 24, which 

causes a transformation that effectively cancels out the 

nonlinearity terms and yields a shortened expression that 

represents the intended linear behavior. This tactical substitution 

is crucial to this study since it helps to go around the system 

dynamics’ complexity and concentrate on the more manageable 

linear features for further research and control scheme 

development. Nonlinearities can be generically divided into 

continuous and discontinuous categories. They can also be 

categorized as known or unknown [15]. 

 

Assumption 1: It is assumed that the non-linearity 𝜃(𝑥, 𝑢) in the 

system is Continuous. 

 

Substituting (42) and (43) into (24) simplifies it and eliminates 

nonlinearity, yielding: 

 

𝑥̇ = 𝐴𝑜𝑥 + 𝐵(𝑘𝑟𝑟 − 𝑘𝑥 − (𝐵𝑇𝐵)−1𝜎𝜃(𝑥, 𝑢)) + 𝜃(𝑥, 𝑢)               (45)

 
𝑥̇ = (𝐴𝑜 − 𝐵𝑜𝑘)𝑥 + 𝐵𝑜𝑘𝑟 − 𝐵𝑜(𝐵𝑜

𝑇𝐵𝑜)
−1𝐵𝑜

𝑇𝜎𝜃(𝑥, 𝑢) + 𝜃(𝑥, 𝑢) (46)

 

 

The equation has the following form once nonlinearity 

components are eliminated: 

 

                                   𝑥̇ = (𝐴𝑜 − 𝐵𝑜𝑘)𝑥 + 𝐵𝑜𝑘𝑟                                 (47) 

 

This form represents a linear term in the analysis and is equivalent 

to (29). 

The development of phase portraits based on various initial 

conditions allows one to illustrate the stability of the system. 

These visual depictions give users a concrete way to evaluate the 

system’s performance across various initial states. The empirical 

evidence is shown to support the stability of the system by 

analyzing trajectory patterns and convergence, which also 

supports the correctness of the theoretical approach [16]. Phase 

portraits, in this research, essentially act as a crucial link between 

theory and empirical validation. Fig. 2-5 depicts the phase portrait 

of all possible state combinations in this study in vivid detail. 

Notably, the convergence of all states towards the equilibrium 

points at zero is demonstrated by this thorough visual phase 

portrait, which provides persuasive proof. The stability of the 

designed control law is unmistakably highlighted by this collective 

behavior, providing strong empirical support for its effectiveness 

in maintaining system stability. The conceptual foundations of this 

research are strengthened by this empirical validation, which 

increases confidence in the efficiency of the suggested control 

technique to preserve system stability. 

 

http://xisdxjxsu.asia/


Journal of Xi’an Shiyou University, Natural Science Edition                                                                                                        ISSN: 1673-064X   

 
http://xisdxjxsu.asia                                                        VOLUME 21 ISSUE 11 NOVEMBER 2025                                                               74-86 

 

 

 
Figure 2 Phase portrait between α, ω, eq. 

 
Figure 3 Phase portrait between α, eq, ed. 

 
Figure 4 Phase portrait between ω, ed, 𝑒𝑓𝑑. 

 
Figure 5 Phase portrait between eq, ed, 𝑒𝑓𝑑. 

 

E. Neuro Fuzzy Controller 

 

An effective computing system that combines fuzzy logic and 

neural networks, the neuro-fuzzy controller, exhibits improved 

flexibility and decision making. In particular, a hybrid learning 

technique is used by the adaptive neuro-fuzzy inference systems 

(ANFIS), which are motivated by the work of Sugeno and 

Tsukamoto [17]. The combination of neural network adaptability 

and fuzzy logic makes ANFIS a powerful instrument for smart and 

trustworthy control solutions in modern research. ANFIS is 

particularly good at handling uncertainty-related problems; it uses 

its flexibility to handle complicated situations with imprecise or 

unclear data. Despite their strength, neural networks have trouble 

processing imprecise data and are not very interpretable. These 

drawbacks are addressed by the incorporation of neural networks 

into neuro-fuzzy systems, like ANFIS, which improves flexibility 

and decision. This hybrid strategy is essential for developing 

intelligent and understandable control solutions, especially in 

situations involving complicated problems and ambiguous data. 

 
Figure 6 Basic Multilayer Multioutput Neuro-Fuzzy Model. 
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The fundamental model of the neuro-fuzzy inference system is 

shown in Fig. 6. The fuzzy inference system makes use of the first-

order Sugeno fuzzy model, which has four inputs (𝑖1, 𝑖2, 𝑖3, and 𝑖4) 

and four related outputs (𝑜1, 𝑜2, 𝑜3, and 𝑜4). This model 

is governed by the following set of rules: 

 

Rule1: If 𝑖1 is 𝐴1, 𝑖2 is 𝐵1, 𝑖3 is 𝐶1, and 𝑖4 is 𝐷1, then the output 

𝑜1 is determined by the equation: 

𝑓1  =  𝑝1𝑖1  +  𝑞1𝑖2  +  𝑟1𝑖3  +  𝑠1𝑖4  +  𝑡1 

 

Rule2: If 𝑖1 is 𝐴2, 𝑖2 is 𝐵2, 𝑖3 is 𝐶2, and 𝑖4 is 𝐷2, then the output 

𝑜2 is calculated as: 

𝑓2  =  𝑝2𝑖1  +  𝑞2𝑖2  +  𝑟2𝑖3  +  𝑠2𝑖4  +  𝑡2 

 

Rule3: If 𝑖1 is 𝐴3, 𝑖2 is 𝐵3, 𝑖3 is 𝐶3, and 𝑖4 is 𝐷3, then the output 

𝑜3 is determined 

using the equation: 

𝑓3  =  𝑝3𝑖1  +  𝑞3𝑖2  +  𝑟3 𝑖3  +  𝑠3𝑖4  +  𝑡3 

 

Rule4: If 𝑖1 is 𝐴4, 𝑖2 is 𝐵4, 𝑖3 is 𝐶4, and 𝑖4 is 𝐷4, then the output 

𝑜4 is derived from 

the equation: 

𝑓4  =  𝑝4𝑖1  +  𝑞4𝑖2  +  𝑟4𝑖3  +  𝑠4𝑖4  +  𝑡4 

 

The estimated weights and parameters for various datasets are 

represented in (48), which summarizes the outputs of the neuro-

fuzzy inference system. It shows how flexible the system is to 

changing data, indicating its capacity to modify internal settings 

for optimum performance across various outputs. 

 

1) layer 1 

 

Each input node in this layer serves as an adaptive component that 

creates a membership grade corresponding to a linguistic label. 

This layer has a fuzzy quality, with 𝑖1, 𝑖2, 𝑖3, and 𝑖4 acting as the 

system’s inputs and 𝑂𝑙,𝑚  designating the mth node’s output in 

layer l. It should be noted that every adaptive node appears as a 

square node with a square function as shown in Eq. 48-51: 

 

                                 

𝑂1,𝑚 = 𝜇𝑖1,𝑚  for 𝑚 = 1,2,3,4               (48)

𝑂1,𝑛 = 𝜇𝑖2,𝑛  for 𝑛 = 1,2,3,4                (49)

𝑂1,𝑜 = 𝜇𝑖3,𝑚  for 𝑜 = 1,2,3,4                (50)

𝑂1,𝑝 = 𝜇𝑖4,𝑚  for 𝑝 = 1,2,3,4                (51)

  

 

          𝜇𝑖1𝑚(𝑖1) = 𝑚𝑎𝑥 [𝑚𝑖𝑛 (
𝑖1 − 𝑤𝑚

𝑥𝑚 − 𝑤𝑚

,
𝑦𝑚 − 𝑖1
𝑦𝑚 − 𝑥𝑚

) , 0]              (52) 

 

where (𝑤𝑚, 𝑥𝑚 , 𝑦𝑚) are the parameters of the gaussian bell shaped 

membership function represented by eq 53. 

 

                      𝜇𝑖1𝑚(𝑖1) =
1

1 + (
𝑖1−𝑦𝑚

𝑤𝑚
)

2

𝑥𝑚

                                        (53) 

 

2) layer 2 

 

This layer is used to evaluate the weights connected to each 

membership function. It uses input values from the first layer, 

designated as 𝑖1𝑚 , and performs membership calculations to 

represent the fuzzy sets corresponding to the relevant input 

variables. 

 
𝑂2,𝑚 = 𝑤𝑚 = 𝜇𝑖1,𝑚(𝑖1) ⋅ 𝜇𝑖2,𝑛(𝑖2) ⋅ 𝜇𝑖3,𝑜(𝑖3) ⋅ 𝜇𝑖4,𝑝(𝑖4)

 for 𝑚, 𝑛, 𝑜, 𝑝 = 1,2,3,4
              (54) 

 

 

3) layer 3 

 

Each node in this layer, denoted by a circle with the letters 𝑁, 

stands for the normalization of the firing intensity from the layer 

before. To determine the amount of activation for each fuzzy rule, 

this layer performs pre-condition matching. This layer’s node 

count is equal to the number of fuzzy rules. Every node figures out 

the strength of the 𝑖𝑡ℎ rule in relation to the total strength of all 

firing rules. 

 

𝑂3,𝑚 = 𝑤𝑚 =
𝑤1

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4

 𝑓𝑜𝑟  𝑚 = 1,2,3,4               (55) 

 

For reliability, the outputs of this layer will be referred to as 

normalized firing strengths. 

 

4) layer 4 

 

This layer provides the output values 𝑂4,𝑚 , which are inferred 

using fuzzy rules. The output is a simple product of the first-order 

polynomial and the normalized firing rule strength. The node 

function is used to express the weighted output of a rule as follows: 

 

𝑂4,𝑚 = 𝑤𝑚𝑓𝑚 = 𝑤𝑚(𝑝𝑚𝑖1 + 𝑞𝑚𝑖2 + 𝑟𝑚𝑖3 + 𝑠𝑚𝑖4 + 𝑡𝑚)        (56) 

 

5) layer 5 

 

This layer, also known as the “output layer” collects all of the 

inputs from layer 4 and transforms the results of fuzzy 

categorization into precise, distinct values. Eq. 48 instructs the 

node on this layer to compute the total of all incoming signals. 

 

          ∑ 𝑂5,𝑚

4

𝑖=1

=
𝑤𝑖1𝑓𝑖1 + 𝑤𝑖2𝑓𝑖2 + 𝑤𝑖3𝑓𝑖3 + 𝑤𝑖4𝑓𝑖4

𝑤𝑖1 + 𝑤𝑖2 + 𝑤𝑖3 + 𝑤𝑖4

                   (55) 

 

 

For the aim of estimating the membership function, the neuro-

fuzzy controller uses a hybrid learning method that combines the 

concepts of least squares estimate and backpropagation. This 

original strategy, described in this research, demonstrates the 

adaptability and flexibility of controller in obtaining precise and 

reliable fuzzy model parameterization. The integrated 

visualization is shown for the neuro-fuzzy controller in Fig. 7 that 
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has been rigorously trained using dataset data from the output 

results of state feedback controllers used in both linear and 

nonlinear systems. With the help of empirical data collected across 

a range of system dynamics, this figure highlights the crucial role 

the neuro-fuzzy controller plays in the system. It also highlights 

its adaptability and optimization potential. 

 

 
Figure 7 Neuro Fuzzy as a controller. 

 

III. RESULTS 

 

The outcomes of applying state feedback control with a carefully 

selected K matrix based on intended pole placement are shown in 

Fig. 8. The most important conclusion to draw from these findings 

is that all system outputs successfully converge in the direction of 

the desired reference step input. This shows that the state feedback 

controller for linear system functions effectively. 

 

This effective tracking of the required reference signal highlights 

the utility of control strategy in real-world applications. It’s a 

noteworthy accomplishment that emphasizes the applicability of 

the approach that is used to govern dynamic systems. 

The output responses of a neural network trained using the dataset 

produced by the state feedback controller are shown in Fig. 9 -13. 

The findings show that there is a need for improvement, even 

though the outputs show some degree of tracking to the specified 

reference input. Notably, it is seen that the error term and tracking 

response converge to the target values quite slowly. As a result, it 

was decided that changes were required to improve the system’s 

functionality. The addition of a neuro-fuzzy controller then led to 

an improvement in tracking accuracy. This effective tracking of 

the required reference signal highlights the utility of control 

strategy in real-world applications. It’s a noteworthy 

accomplishment that emphasizes the applicability of the approach 

that is used to govern dynamic systems. 

 
Figure 8 State feedback Linear model results for 𝑓𝑠𝑦𝑠 , 𝐼𝑦 , 𝜃𝐼𝑦 , 𝑃𝑦 and 𝑄𝑦.

 

 
Figure 9 Neural Network result for 𝑓𝑠𝑦𝑠 . 

 

 
Figure 10 Neural Network result for 𝐼𝑦 . 
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Figure 11 Neural Network result for 𝜃𝐼𝑦. 

 

 
Figure 12 Neural Network result for 𝑃𝑦. 

 
Figure 13 Neural Network result for 𝑄𝑦. 

 

The output responses of the linearly trained neuro-fuzzy controller 

are shown collectively in Fig. 14 - 18. These outcomes clearly 

show a noteworthy accomplishment in this research, where a 

significant portion of the required output references have been 

successfully attained.  

This finding reinforces the effectiveness of the control 

methodology and confirms its capability of achieving the desired 

performance goals. It demonstrates the effective use 

of the neuro-fuzzy controller in controlling the system and 

provides important insights into the flexibility and precision of the 

approach. 

 

 
Figure 14 Neuro Fuzzy controller Output for 𝑓𝑠𝑦𝑠  Output. 

 
Figure 15 Neuro Fuzzy controller Output for 𝐼𝑦 Output. 
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Figure 16 Neuro Fuzzy controller Output for 𝜃𝐼𝑦 Output. 

 
Figure 17 Neuro Fuzzy controller Output for 𝑃𝑦 Output. 

 
Figure 18 Neuro Fuzzy controller Output for 𝑄𝑦 Output. 

 

Fig. 19 depicts the outcomes of applying the control law to the 

nonlinear system and how well they coincide with the reference 

step input. It is crucial to remember that certain errors continue as 

a result of transients and residual nonlinearities in the system. 

However, these little differences are regarded as acceptable in the 

context of this study. They highlight the practical difficulties in 

regulating nonlinear systems while also supporting the 

effectiveness of control strategy in significantly reducing 

these difficulties. 

 

 
Figure 19 Controlled Non-Linear model result for 𝑓𝑠𝑦𝑠 , 𝐼𝑦 , 𝜃𝐼𝑦 , 𝑃𝑦  and 

𝑄𝑦. 

The output responses produced by the neuro-fuzzy controller in 

this nonlinear system are completely depicted in the Fig. 20 to 24 

that follow. Notably, compared to those of the linear system, the 

mean square error (MSE) values in these nonlinear tests are seen 

to be higher. The existence of transients inside the nonlinear 

system and the persistence of residual nonlinearities are to blame 

for this mismatch in MSE. These findings illustrate the complexity 

of nonlinear systems and the difficulties they present to control 

theories. The neuro-fuzzy controller shows its adaptability and 

effectiveness in controlling the nonlinear dynamics, underscoring 

the potential of this approach in the context of nonlinear system 

control. The performance may show some deviations from the 

reference signals as a result of these complexities, but it is 

important to emphasize that this is only temporary. 
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Figure 20 Neuro Fuzzy non-linear model control output for 𝑓𝑠𝑦𝑠 . 

 
Figure 21 Neuro Fuzzy non-linear model control output for 𝐼𝑦. 

 
Figure 22 Neuro Fuzzy non-linear model control output for 𝜃𝐼𝑦. 

 
Figure 23 Neuro Fuzzy non-linear model control output for 𝑃𝑦. 

 

 
Figure 24 Neuro Fuzzy non-linear model control output for 𝑄𝑦. 

The difference in MSE between the linear and nonlinear systems 

is seen in Table 1. The nonlinear system, impacted by transients 

and residual nonlinearities, registers larger MSE whereas the 

linear system records lower MSE values. It is remarkable that both 

systems effectively converge towards the required reference 

outputs despite this mismatch. This demonstrates the efficiency of 

the control technique in controlling the complexity of the 

nonlinear system while guaranteeing the achievement of the 

specified performance goals. 
Table 1 Linear and Non-linear error comparison 

Outputs Linear Model MSE Non-Linear Model 

MSE 

𝒇𝒔𝒚𝒔 0.30465 2.3826 

𝑰𝒚 0.009567 1.4918 

𝜽𝑰𝒚 0.031592 0.5465 

𝑷𝒚 0.003991 0.3416 

𝑸𝒚 0.44256 1.6486 
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The reduction in mean square error (MSE) that we found for the 

linear model in our study as compared to the nonlinear model 

suggests that the neuro-fuzzy controller manages uncertainties and 

transients in the linear system well. The model’s underlying 

linearity makes a control approach easier to implement, which 

enhances output tracking performance. But in the nonlinear model, 

the neuro-fuzzy controller finds it difficult to handle the 

complexity that nonlinearities bring, which results in a relatively 

higher MSE. In real-world situations when there are disruptions 

and outside influences, the neuro-fuzzy system’s flexibility 

becomes essential. Although neuro-fuzzy controllers are excellent 

at managing uncertainties because they dynamically modify 

parameters in response to input data, the addition of nonlinearities, 

disturbances, and sensor noise can affect the mean square error 

(MSE) and even raise it because of the difficulties presented by 

nonlinear dynamics and outside factors. The resulting MSE 

depends on how well the system adjusts to this complexity and 

varies according to the details of the particular nonlinear plant as 

well as outside variables. 

IV. NOVELTY 

Our work presents a novel method for controlling synchronous 

generators through the use of an Artificial Neuro-Fuzzy Inference 

System with multiple inputs and multiple outputs. Compared with 

previous approaches based on traditional neural networks, our 

technology is more effective and provides better tracking and 

control. Since synchronous generators account for 95% of the 

world’s energy production, this breakthrough is essential because 

it highlights the possibility of long-term, significant efficiency 

improvements and savings. 

V. CONCLUSION 

In conclusion, this research explored the use of state feedback and 

neuro-fuzzy controllers in the control of both linear and nonlinear 

systems. The results show how this control schemes operate 

differently from one another. 

The state feedback controller excels at offering accurate reference 

tracking with little error for linear systems. It is a reliable option 

for situations involving linear systems. 

On the other hand, nonlinear systems pose unique problems such 

as transient responses and persistent nonlinearities. The neuro-

fuzzy controller, however, exhibits a remarkable capacity to adjust 

to these difficulties. The nonlinear system eventually converges to 

the desired reference outputs despite the existence of a 

significantly higher mean square error (MSE), highlighting the 

adaptability and durability of this control strategy. 

Future directions for research could include refining non-linear 

system control strategies, examining hybrid control techniques, 

applying the findings to real-world scenarios, expanding on 

system identification, creating reliable control protocols, and 

investigating the use of cutting-edge neural network architectures 

like Long Short-Term Memory (LSTM) and Recurrent Neural 

Networks (RNN). By utilizing deep learning and sequence 

modelling to improve control system performance, these subjects 

provide intriguing avenues for further research and practical 

application, ultimately propelling the field of control theory 

forward. 

NOMENCLATURE 

 

𝛼 Angle of the internal rotor 

𝑓𝜃 Rate at which the HV bus’s voltage phase 

changes 

𝜔𝐵 The base speed of the rotor in rad/s 

𝛺 The rotor speed per unit 

𝐷𝑟  The rotor’s damping constant 

𝑀 The inertia moment 

𝑇𝑚 Constant for Mechanical torque 

𝑇𝑑𝑜 , 𝑇𝑞𝑜 Direct-axis and quadrature-axis of coil 

𝑋𝑑, 𝑋𝑞  d and q-axis synchronous reactance 

𝑋′𝑑, 𝑋′𝑞  d and q-axis transient reactance 

𝑒𝑓𝑑 Excitation voltage of the generator field 

𝑒𝑑, 𝑒𝑞  Emf in the coil’s d and q axes 

𝑇𝐴 Automatic regulator’s time constant 

𝐾𝐴 Automatic gain of a voltage regulator 

𝜈𝑡 Magnitude of the stator voltage 

𝑇𝑒 Constant for electric torque 

𝑛̅  Nominal value 

𝑟𝑠, 𝑟𝑇  Transformer armature and winding resistance 

𝑋𝑇 Transformer leakage reactance 

𝜈𝑑 , 𝜈𝑞 d and q-axis voltage 

𝜈 HV bus voltage magnitude 

𝜄𝑦 , 𝜃𝜄𝑦 The magnitude and phase of current 

𝑃𝑦 , 𝑄𝑦  Power, Both Active and Reactive 

𝑓𝑠𝑦𝑠 Frequency of system 

𝜈𝑟𝑒𝑓  Reference constant of an automatic voltage 

regulator 

△ Model uncertainties 

𝐼2 Identity matrix of 2 x 2 
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